
z/OS
Version 2 Release 3

DFSMS Distributed FileManager Guide
and Reference

IBM

SC23-6848-30

Note

Before using this information and the product it supports, read the information in “Notices” on page
111.

This edition applies to Version 2 Release 3 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2019-02-15
© Copyright International Business Machines Corporation 1993, 2017.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

List of Figures.. vii
List of Tables.. xi

About this document...xiii
Required product knowledge.. xiii
Referenced documents... xiv
z/OS information..xiv

How to send your comments to IBM..xv
If you have a technical problem...xv

z/OS Version 2 Release 1 summary of changes...xvi

Chapter 1. Introduction to Distributed FileManager.. 1
Terminology Used in This Book... 1
Introduction to Distributed Data Processing...2

Extended Enterprise Data Access..2
Client/Server Perspective...4

DFSMSdfp Distributed Data Processing Environment.. 4
Distributed FileManager...4
Introduction to the Distributed FileManager Environment...6

Components of the Distributed FileManager Environment...6
Platforms That Support DDM Architecture Implementations...7
How Distributed FileManager Works..7
How Distributed FileManager DataAgent Works... 9

Scenarios for Distributed FileManager..10

Chapter 2. Accessing Data Sets with Distributed FileManager............................... 11
Accessing z/OS Data Sets.. 11

Data Set Requirements.. 11
Data Set Types Supported..11
Data Set Types Not Supported...12
File Models Supported... 12
Default File Attributes.. 12

Distributed FileManager Access Functions...13
Record Files and Record Access.. 13
Stream Files and Stream Access... 15
Directories and Directory Access...16

Data Set Naming.. 18
Wild Cards...18
Wild Card Restrictions..18

Using VSAM Data Sets... 18
REUSE Attribute for VSAM Data Sets.. 19

Nonreusable Attribute..19
Reusable Attribute... 19

Using PDSE and PDS Data Sets... 20
Special PDSE and PDS Processing Considerations... 20
Wildcard Processing Exceptions.. 20
Using PDSEs... 21
Using PDSs..21

Coded Character Set Identifiers..21
Setting the CCSID Attribute... 21

 iii

Data Conversion... 22
Associated DDM Attributes..23

Listing DDM Attributes... 23
Propagating DDM Attributes.. 25

Accessing Data Using the DataAgent Parameters.. 26
Using the DFM DataAgent Filename Suffix Parameters... 26

Using the AGENT(agent_name<,procedure_parameter>)..26
Using the PARM(agent_parameter_list).. 26
Using the PGM(program_name).. 27
Using the START(job_name<,job_parameters>)...27

Chapter 3. Customizing z/OS for Distributed FileManager..................................... 29
What Is In This Chapter?... 29

Summary of Customizing Tasks... 29
Interrelationships of Customizing Tasks... 29

APPC/MVS Customizing Tasks...31
Defining PARMLIB Start Parameters for APPC/MVS... 32
Creating the Distributed FileManager TP Profile... 33
Creating the APPC/MVS Side Information Data Set.. 34
Defining PARMLIB Start Parameters for the APPC/MVS Scheduler..34

VTAM Customizing Tasks... 35
Defining the Local LU to VTAMLST... 35
Defining APPC/MVS Logon Mode Entry in VTAMLIB..36
Defining LU and Logon Mode on Partner Systems...37

Distributed FileManager Customizing Tasks... 38
Tuning Distributed FileManager Startup Parameters in System PARMLIB.. 38
Activating Distributed FileManager in System PROCLIB...41
Verifying PPT Entries for Distributed FileManager.. 41

ACS Routines for Defining Distributed FileManager SMS Classes..42
Establishing Distributed FileManager TP Access Security... 43
Using RACF to Control Access to the Distributed FileManager TP... 43

Defining the Distributed FileManager TP Profile to RACF... 44
Defining a TP Administrator to RACF... 44
Defining a User ID to RACF.. 44
Implementing RACF Access Protection for TP.. 44

Chapter 4. Operating Distributed FileManager.. 45
Starting the Distributed FileManager Environment.. 45

Starting APPC/MVS...45
Starting the APPC/MVS Transaction Scheduler...45
Starting Up Distributed FileManager... 45
Triggering the Distributed FileManager DataAgent... 45

Monitoring Status of Distributed FileManager Conversations.. 46
Using the DISPLAY APPC Command..46
Using the DISPLAY ASCH Command... 46

Controlling Status of Distributed FileManager Conversations..47
Deactivating the Distributed FileManager TP.. 47
Stopping a Local LU with the MVS SET Command...47
Stopping DFM for z/OS with the MVS CANCEL Command...47

Appendix A. System Samples...49
System SAMPLIB Samples.. 49

GDEAPPC.. 49
GDEAPDEF..49
GDEASCH..50
DFM00.. 51
GDELOGMD...51

iv

GDETPDEF.. 53
GDEPRTLU.. 54

Appendix B. DFMX0001... 57

Appendix C. DFMXAGNT.. 59

Appendix D. DFMXSORT...65

Appendix E. DFMXSRTI..73

Appendix F. DFMQTSO... 77

Appendix G. DFMXTSOI... 85

Appendix H. System PROCLIB Member DFM... 91

Appendix I. PPT Entries for Distributed FileManager...93

Appendix J. DFMACALL.C sample...95

Appendix K. DDM File Attributes.. 97

Appendix L. Application Programming Considerations.. 99
Distributed FileManager Implementation...99

DDM Record Access File Creation..99
Stream File Creation.. 100
File Access Commands Supported by Distributed FileManager...100

DDM Record Access Restrictions.. 104
Stream File API Restrictions... 105
Logon Mode Requirements..105

Appendix M. Accessibility.. 107
Accessibility features.. 107
Consult assistive technologies.. 107
Keyboard navigation of the user interface.. 107
Dotted decimal syntax diagrams...107

Notices..111
Terms and conditions for product documentation... 112
IBM Online Privacy Statement.. 113
Policy for unsupported hardware..113
Minimum supported hardware..114
Programming interface information..114
Trademarks.. 114

Glossary.. 115
Index.. 127

 v

vi

List of Figures

1. Extended Enterprise Environment.. 3
2. Client/Server Cooperative Processing.. 4
3. Example of DDM Source—DDM Target Relationships...5
4. Distributed FileManager Processing Environment... 8
5. DDM Source System for z/OS Target Communication Flow... 9
6. ALTER Command that Marks a Data Set Reusable...20
7. IDCAMS ALTER Command.. 22
8. ISMF Data Set List Columns 34-35...24
9. LISTCAT Command..24
10. IDCAMS LISTCAT Output Showing DDMEXIST and CCSID Fields... 25
11. Interrelationships of Customizing Tasks for Distributed FileManager.. 31
12. Basic LUADD Definition... 32
13. TPADD Command Example...33
14. VTAM APPL Definition... 36
15. Logon Mode Table... 37
16. DFM Member Example..41
17. Data Class Routine.. 42
18. Management Class Routine.. 42
19. Storage Class Routine... 43
20. APPC/MVS Start Parameters.. 49
21. VTAM APPL Definition in VTAMLST... 50
22. ASCH Start Parameter Statements to Run DFM...51
23. Startup Parameters for Distributed FileManager... 51
24. VTAM Logon Mode Table Part 1 of 2... 52
25. VTAM Logon Mode Table Part 2 of 2... 53
26. MVS/APPC Setup for DFM: TP Definition Utility Part 1 of 2... 54
27. MVS/APPC Setup for DFM: TP Definition Utility Part 2 of 2... 54
28. VTAM Partner LU Definition to Run DFSMS/DFM... 55
29. Starting the DFM DataAgent... 57
30. DFM DataAgent Sample Routine Part 1 of 5.. 59
31. DFM DataAgent Sample Routine Part 2 of 5.. 60
32. DFM DataAgent Sample Routine Part 3 of 5.. 61
33. DFM DataAgent Sample Routine Part 4 of 5.. 62
34. DFM DataAgent Sample Routine Part 5 of 5.. 63
35. DFM DataAgent Sort Sample Part 1 of 7.. 65
36. DFM DataAgent Sort Sample Part 2 of 7.. 66
37. DFM DataAgent Sort Sample Part 3 of 7.. 67
38. DFM DataAgent Sort Sample Part 4 of 7.. 68
39. DFM DataAgent Sort Sample Part 5 of 7.. 69

 vii

40. DFM DataAgent Sort Sample Part 6 of 7.. 70
41. DFM DataAgent Sort Sample Part 7 of 7.. 71
42. Sample Installation for the DFMXSORT DataAgent Routine Part 1 of 4..73
43. Sample Installation for the DFMXSORT DataAgent Routine Part 2 of 4..74
44. Sample Installation for the DFMXSORT DataAgent Routine Part 3 of 4..75
45. Sample Installation for the DFMXSORT DataAgent Routine Part 4 of 4..76
46. DFM DataAgent Sample Routine (TSO) Part 1 of 7.. 77
47. DFM DataAgent Sample Routine (TSO) Part 2 of 7.. 78
48. DFM DataAgent Sample Routine (TSO) Part 3 of 7.. 79
49. DFM DataAgent Sample Routine (TSO) Part 4 of 7.. 80
50. DFM DataAgent Sample Routine (TSO) Part 5 of 7.. 81
51. DFM DataAgent Sample Routine (TSO) Part 6 of 7.. 82
52. DFM DataAgent Sample Routine (TSO) Part 7 of 7.. 83
53. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 1 of 7......................... 85
54. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 2 of 7......................... 85
55. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 3 of 7......................... 86
56. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 4 of 7......................... 86
57. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 5 of 7......................... 87
58. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 6 of 7......................... 88
59. Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 7 of 7......................... 89
60. DFM Startup Procedure...91
61. PPT Entries for Distributed FileManager.. 93
62. DFM DataAgent Sample Part 1 of 25..96
63. DFM DataAgent Sample Part 2 of 25..96
64. DFM DataAgent Sample Part 3 of 25..96
65. DFM DataAgent Sample Part 4 of 25..96
66. DFM DataAgent Sample Part 5 of 25..96
67. DFM DataAgent Sample Part 6 of 25..96
68. DFM DataAgent Sample Part 7 of 25..96
69. DFM DataAgent Sample Part 8 of 25..96
70. DFM DataAgent Sample Part 9 of 25..96
71. DFM DataAgent Sample Part 10 of 25..96
72. DFM DataAgent Sample Part 11 of 25..96
73. DFM DataAgent Sample Part 12 of 25..96
74. DFM DataAgent Sample Part 13 of 25..96
75. DFM DataAgent Sample Part 14 of 25..96
76. DFM DataAgent Sample Part 15 of 25..96
77. DFM DataAgent Sample Part 16 of 25..96
78. DFM DataAgent Sample Part 17 of 25..96
79. DFM DataAgent Sample Part 18 of 25..96
80. DFM DataAgent Sample Part 19 of 25..96
81. DFM DataAgent Sample Part 20 of 25..96
82. DFM DataAgent Sample Part 21 of 25..96

viii

83. DFM DataAgent Sample Part 22 of 25..96
84. DFM DataAgent Sample Part 23 of 25..96
85. DFM DataAgent Sample Part 24 of 25..96
86. DFM DataAgent Sample Part 25 of 25..96
87. Error Messages..106

 ix

x

List of Tables

1. Tunable Parameters in DFM00... 38
2. DDM File Attributes... 97
3. DDM Access Method Commands Supported for Distributed FileManager Sequential Files.................. 100
4. DDM Access Method Commands Supported for Distributed FileManager Direct Files.......................... 102
5. DDM Access Method Commands Supported for Distributed FileManager Keyed Files..........................103
6. DDM Access Method Commands Supported for Distributed FileManager Stream Files........................ 104

 xi

xii

About this document

This document describes the Distributed FileManager component of DFSMSdfp, henceforth called
Distributed FileManager or DFM in this book. Distributed FileManager is a Distributed Data Management
Architecture (DDM) server implementation on z/OS®. Distributed FileManager provides DDM client
implementations on heterogeneous systems with remote access to z/OS data. Applications can access
z/OS data independent of where the data is located in a distributed network. Using the Distributed
FileManager server can improve your ability to access z/OS data from applications running on client
systems.

This document introduces you to Distributed FileManager and how it works, what its data set
requirements are, and how to customize z/OS for Distributed FileManager support. This book discusses
operating the Distributed FileManager environment and working with DDM client implementations on
AIX®, i5/OS and DDM client systems. This document also discusses working with DataAgent through the
remote DDM application of SMARTdata UTILITIES (SdU).

For information about accessibility features of z/OS and z/OS.e, for users who have a physical disability,
see Appendix M, “Accessibility,” on page 107.

Required product knowledge
To use this book effectively, you should be familiar with the following:

• On z/OS systems:

– Characteristics of data sets and access methods
– Using the Storage Management Subsystem (SMS) to manage data sets
– Utilities that move or copy data sets
– Working with Virtual Telecommunications Access Method (VTAM®)
– Using the Interactive Storage Management Facility (ISMF)
– Working with Advanced Program-to-Program Communications (APPC)

• Distributed data processing:

– Fundamentals of DDM
– System Network Architecture (SNA) LU 6.2 protocol for connecting applications
– Client/server technology

• DDM source implementations (clients):

i5/OS operating system:

– File system
– i5/OS DDM
– i5/OS APPC
– i5/OS control language (CL)

Other DDM client systems:

– Stream- and record-oriented file access
– Application programming interfaces (APIs)
– SMARTdata UTILITIES (SdU)
– Communications Manager or Communications Manager/2

© Copyright IBM Corp. 1993, 2017 xiii

Referenced documents
The following publications are referenced in this book:

Publication Title Order Number

Character Data Representation Architecture Overview GC09-2207

Character Data Representation Architecture Reference and Registry SC09-2190

Distributed Data Management Architecture: General Information GC21-9527

z/OS DFSMS Access Method Services Commands SC23-6846

z/OS DFSMSdss Storage Administration SC23-6868

z/OS DFSMS Using Data Sets SC23-6855

z/OS DFSMSdfp Utilities SC23-6864

z/OS MVS Planning: APPC/MVS Management SA23-1388

z/OS Security Server RACF Security Administrator's Guide SA23-2289

VTAM Network Implementation Guide SC31-6434

VTAM Resource Definition Reference SC31-6438

VTAM Resource Definition Samples SC31-6414

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS library, go to IBM Knowledge Center (www.ibm.com/support/knowledgecenter/
SSLTBW/welcome).

xiv z/OS: DFSMS Distributed FileManager Guide and Reference

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS DFSMS Distributed FileManager Guide and

Reference, SC23-6848-30
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 1993, 2017 xv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

z/OS Version 2 Release 1 summary of changes

See the Version 2 Release 1 (V2R1) versions of the following publications for all enhancements related to
z/OS V2R1:

• z/OS Migration
• z/OS Planning for Installation
• z/OS Summary of Message and Interface Changes
• z/OS Introduction and Release Guide

xvi z/OS: DFSMS Distributed FileManager Guide and Reference

Chapter 1. Introduction to Distributed FileManager

Today's complex data processing environment often requires accessing data that is distributed among
many different computer systems. Distributed FileManager (DFM) helps solve the problems of distributed
data processing. It offers services for accessing and processing z/OS data from remote computer systems
as if the data were local to the remote systems.

The objective of this chapter is for you to understand the concepts of DFM, its benefits, and how it works.
To aid your understanding, this chapter includes the following topics:

• Introduction to distributed data processing
• DFSMSdfp distributed processing environment
• Introduction to the DFM environment
• Scenarios for DFM applications.

Terminology Used in This Book
Before beginning the discussion, please acquaint yourself with the following terms:
associated DDM attributes

Associated DDM attributes are z/OS data set attributes that are defined in DDM. Examples of
associated DDM attributes are file size, lock options or end-of-file offset for byte-stream files.
Associated DDM attributes are not necessarily exclusive to DDM, but can be common to other
applications that access the same data sets.

data set/file
Data set and file are used interchangeably throughout this book. Both terms refer to a named
collection of data that is treated as a single unit of data storage and retrieval.

Distributed Data Management Architecture
Distributed Data Management Architecture (DDM) offers a vocabulary and a set of rules for sharing
and accessing data among like and unlike computer systems. DDM includes a set of standardized file
models for keyed, relative record, sequential, and stream data. It allows users and applications to
access data without concern for the location or format of the data.

Distributed FileManager
Distributed FileManager (or DFM) is an implementation of target (server) support as defined by DDM.
DDM permits systems in an extended enterprise that have DDM source (client) capability to access file
data on a DDM target z/OS system. See definitions for source, target, and extended enterprise.

extended enterprise
An extended enterprise is a heterogeneous computing environment that often includes both
centralized hosts and distributed workstations connected in a network. Gateways within the extended
enterprise provide connections to local area networks (LANs). These LANs can serve any computing
systems architecture.

local
Local is your reference point when discussing such entities as platforms or applications. For example,
when discussing network conversations from the reference point of a z/OS platform, local refers to
entities located on that z/OS system. Similarly, when discussing data access methods from the
reference point of a z/OS platform, local refers to those access methods. Contrast with remote.

partner
Refers to complementary information or function on a remote platform. For example, the ability of
DFM to conduct a network conversation requires a local logical unit (LU) on the target z/OS system and
a partner LU on the source system.

© Copyright IBM Corp. 1993, 2017 1

platform
A computer system running a specific operating system connected in a network. For example, i5/OS
and z/OS are different operating system platforms.

record-oriented file
File with a record-oriented structure that is accessed record by record. This file structure is typical of
data sets on VM, z/OS, OS/390, and i5/OS systems. Contrast with stream-oriented file.

remote
Remote is relative to your reference point when discussing such entities as platforms or applications.
For example, when discussing network conversations from the reference point of a z/OS platform,
remote refers to entities that access z/OS dataacross a network. For example, a DDM client
application accessing local z/OS data would be remote. Contrast with local.

source
Source is the term used in DDM to refer to the platform that originates a request for remote data.
Source is also known as client. Source and client are used interchangeably within the scope of this
document. Contrast with target.

stream-oriented file
File with a byte-oriented structure that is accessed as continuous streams of data bytes. This file
structure is common in workstation environments. Contrast with record-oriented file.

target
Target is the term used in DDM to refer to the platform that fulfills a request for remote data. Target is
also known as server. Target and server are used interchangeably within the scope of this document.
Contrast with source.

Introduction to Distributed Data Processing
Topics included in this introduction are extended enterprise data access, requirements for accessing
remote data in a network, and the client/server perspective.

Extended Enterprise Data Access
The extended enterprise environment depicted in Figure 1 on page 3 represents today's data
processing installations. Such an environment often includes both centralized hosts and distributed
workstations or hosts connected in a network. Gateways provide connections to LANs. These LANs can
serve any computing systems architecture.

2 z/OS: DFSMS Distributed FileManager Guide and Reference

Figure 1: Extended Enterprise Environment

Most applications in an extended enterprise tend to share data to some degree. The trend toward sharing
data will grow as workstations become more powerful, networks become more widespread, and
applications are written that exploit these capabilities. The evolution of the distributed environment has
created the following new requirements for accessing remote data.

Transparent Data Access

Data access should be transparent to applications regardless of the internal format and location of the
data. In addition, the data that applications access must at all times be the latest copy. In this discussion,
data access implies that applications on source systems can create, read, and write data on target z/OS,
or OS/390 systems.

Sharing and Accessing Data

Data in an extended enterprise must be in a form that can be shared throughout an enterprise. Multiple
workstations must have access to the same z/OS data in which the z/OS system provides data sharing and
serializing at the data set level.

Avoiding Duplicate Data

In an extended enterprise, uncontrolled data duplication leads to storage management problems and
wasting of storage resources. In contrast, controlled duplication for backups and migration is desirable
and necessary. Downloading data to the local or LAN environment becomes unnecessary for applications
with access to z/OS data through DFM services.

Portable Applications

For any computing that is to be off-loaded from mainframe systems to workstations, applications should
be readily portable to workstations without downloading data. You should be able to access and share
data resident on z/OS systems by running applications on workstations.

Applications developed on workstations before they are ported to z/OS systems should also be able to
access data on z/OS systems without downloading it to the workstations or to the LAN servers supporting
the workstations.

Introduction to Distributed FileManager 3

Transparent Applications

Sometimes pertinent data is spread out in an extended enterprise, some of it local to the workstation
where the application is running, and the rest of it on a remote z/OS system. If so, a transparent
application that runs without modifications allows existing or new applications to access data wherever
the data exists without unnecessary data movement. These applications frequently require both record-
and stream-oriented data.

Client/Server Perspective
From an architectural point of view, the client or server can be a workstation, a central processor, a local
processor or a departmental processor. Generally, a client is best described as a workstation. It is
possible, however, for a large host system to be a client that requests data from a small computer such as
a workstation.

Usually a server is a central processor, a local system or a departmental system. It is possible, however,
for a workstation to be a server that provides data to a central processor. See Figure 2 on page 4.

Figure 2: Client/Server Cooperative Processing

DFSMSdfp Distributed Data Processing Environment
A key objective of DFSMSdfp is to offer products that provide workstations with both record- and stream-
oriented data access to z/OS data. Workstations accessing z/OS data must have the capability of creating,
reading, and writing data to the z/OS system-managed external storage. DFM is a DFSMSdfp client/server
product that enables remote clients in your network to access data on z/OS systems.

Distributed FileManager
DFM is a DDM server on a z/OS system. DDM enables clients to share and access data on z/OS servers
regardless of where the data is located. The benefits of DFM are:

• It provides applications and end-users with transparent access to z/OS data from remote platforms

– Supports both record- and stream-oriented data
– Gives workstations access to z/OS data as if the data were local

4 z/OS: DFSMS Distributed FileManager Guide and Reference

– Allows you to use local commands; no need to use z/OS commands
• It improves the productivity of application programmers

– Can develop high-level language applications independent of data location
– Eliminates upload and download procedures. Data access is in-place
– Can share data with other workstations as well as with z/OS batch jobs and Time Sharing Option

(TSO) users
– Allows creating, updating, deleting, and renaming of z/OS data that is accessed in-place

• It capitalizes on strengths of centralized data storage

– Offers backup and recovery support across an extended enterprise
– Allows data to be shared throughout an extended enterprise
– Ensures security and data integrity using normal z/OS conventions
– Provides latest storage and data management techniques for workstation data

• It leverages existing investments in data, applications, support skills, and storage capacity

DFM uses APPC LU 6.2 protocol to establish network conversations with DDM clients. The conversations
consist of DDM commands and messages. DDM is the common language between DDM clients and DFM.
The DDM client support is currently available on DDM client and i5/OS systems (see Figure 3 on page
5).

Figure 3: Example of DDM Source—DDM Target Relationships

Introduction to Distributed FileManager 5

Introduction to the Distributed FileManager Environment
This discussion includes the following topics:

• Components of the DFM environment
• Platforms that support DDM implementations
• How DFM works
• How DFM DataAgent works.

Components of the Distributed FileManager Environment
The DFM environment requires DDM, DDM source systems, APPC/LU 6.2 protocol, and Resource Access
Control Facility (RACF®) or an equivalent product.

DDM

DDM implementations use DDM commands as their common language for processing remote data access.
DDM provides a vocabulary and set of rules for sharing and accessing data among like and unlike
computer platforms. It includes a set of standardized file models and access methods that allows users
and applications to access remote data without needing to upload and download files.

DFM is a DDM target implementation providing access and sharing of z/OS files to DDM source
implementations. DDM source systems use DDM commands to access and share data on DDM target z/OS
systems. DDM defines the following terms concerning remote file access:
Source of the request

Initiates requests for data that resides remotely on another system that has DDM target capability.
Target of the request

Processes requests for data initiated by a source system in the network.

For more information about DDM, see Distributed Data Management Architecture: General Information.

DDM Source Systems

i5/OS, AIX, and DDM clients exploit DFM services. i5/OS supports both DDM source and DDM target
capabilities. For DDM clients and AIX, DDM source systems are available through SMARTdata UTILITIES
(SdU); these source systems provide local record file support and DDM source capability.

The DDM client DDM source implementation requires SdU, which supports record file access for
applications written in high-level languages that include C, PL/I and IBM Visual COBOL and Visual PL/I.
These high-level languages use the record access feature in a transparent manner so that an application
can run from the workstation to access remote record data just by recompiling. It supports stream file
access for applications written in C. With SdU, stream access is also invoked for files or directories that
are the target of the DDM client commands issued for z/OS.

APPC Communications Protocol

DFM uses the APPC LU 6.2 protocol, defined by Systems Network Architecture (SNA), to communicate
with DDM source implementations in an extended enterprise network. The APPC LU 6.2 protocol allows
systems in a network to communicate on a peer-to-peer basis.

APPC LU 6.2 support on z/OS systems is provided by APPC/MVS, a part of the base control program (BCP)
of z/OS and Virtual Telecommunications Access Method (VTAM). DFM is conversant in APPC/MVS LU 6.2
protocols and commands. A DDM source implementation is conversant in APPC LU 6.2 protocols and
commands.

APPC LU 6.2 on a DDM source system and LU 6.2 on a z/OS system enable conversations to take place
between the DDM source and DFM. These conversations carry DDM commands and messages involved in
processing remote access to z/OS data.

For more information about APPC/MVS, see z/OS MVS Planning: APPC/MVS Management.

6 z/OS: DFSMS Distributed FileManager Guide and Reference

RACF Conversation Access Security

RACF, or an equivalent product, is used to control which source systems are authorized to initiate
conversations with DFM. By setting up RACF resource class profiles, you can define which user IDs or
groups are authorized to access DFM services. You can use RACF resource class profiles to define
administrators with update authority to authorize access to DFM.

Once a conversation is initiated, DFM uses RACF services to control the actual data access as well. For
more details, see “Using RACF to Control Access to the Distributed FileManager TP” on page 43.

Platforms That Support DDM Architecture Implementations
DDM source or target implementations are supported on the following IBM platforms:
Platform

Implementation
DDM client

DDM source only
AIX

DDM source only
i5/OS

Both DDM source and DDM target
4680 Point-of-Sale

DDM target only
CICS®/DDM

DDM target only (z/OS and VSE)

How Distributed FileManager Works
The objective of this discussion is to explain how DFM generally works on a z/OS system and how remote
applications access z/OS data using DFM. Unless otherwise indicated, you can assume that the DDM
source implementation is SMARTdata UTILITIES on a DDM client.

Profile of the Distributed FileManager Environment

DFM enables authorized users and applications on DDM source systems to accessz/OS data remotely.
Applications executing on DDM source systems can access z/OS data by exploiting the DFM target
support.

DFM participates in APPC LU 6.2 conversations with DDM source implementations. The conversations are
exchanges of DDM source commands and DDM target responses. APPC/MVS works with VTAM to provide
the logical connection on z/OS for network conversations with source systems. VTAM manages the local
logical unit (LU) that forms an LU 6.2 to LU 6.2 link with a partner LU on a remote system.

RACF, or an equivalent product, provides authorization services for controlling access to DFM. Once a
conversation is established, RACF also provides authorization services for controlling access to the z/OS
data.

DFM provides access to z/OS data to DDM source implementations as follows (see Figure 4 on page 8):

1. An LU 6.2 to LU 6.2 network link is established between a DDM source and VTAM and APPC/MVS on
the DDM target z/OS system.

2. The DDM source sends an LU 6.2 allocate request to initiate a conversation with DFM.
3. The RACF authorizes the DDM source access to DFM.
4. The APPC/MVS scheduler (ASCH), running in an APPC conversation address space, initiates and

schedules the DFM started procedure address space.
5. DFM, running in the DFM central address space, processes the allocate request from the DDM source.

It begins a network conversation with the DDM source exchanging DDM commands and messages.

Introduction to Distributed FileManager 7

Figure 4: Distributed FileManager Processing Environment

How DDM Source Systems Communicate with Distributed FileManager

The communication relationship between a DDM source system and DFM is shown in Figure 5 on page
9.

8 z/OS: DFSMS Distributed FileManager Guide and Reference

Figure 5: DDM Source System for z/OS Target Communication Flow

The DDM source system accesses z/OS data using DFM as follows:

1. An application on the source system requests data.
2. The source LDMI (local data management interface) determines if the data is located locally or

remotely.
3. If the data is remotely located, the request is turned over to the source DDM (DDM source).
4. An LU 6.2 to LU 6.2 network link is established between APPC LU 6.2 on the source system and VTAM

and APPC LU 6.2 on the z/OS system.
5. Source DDM sends an allocate request across the network link to DFM.
6. If the source is authorized access, a network conversation begins between source DDM and target

DFM that processes remote data access to z/OS data.

How Distributed FileManager DataAgent Works
The DFM DataAgent function allows workstation users to invoke remote procedures that run as
extensions or agents of DFM. This expands the capability of this mode of access by providing access to
functions or data sets not ordinarily supported by DFM and by allowing workstations greater control over
processing on the z/OS server.

DFM DataAgent allows the workstation user of SdU to invoke user-written, IBM-written, or vendor-written
DFM DataAgent routines using:

• TSO commands, CLISTs, or REXX execs
• DFM DataAgent routines through the remote file access feature of SdU.

Introduction to Distributed FileManager 9

The DFM DataAgent is an extension to the DFM component of DFSMSdfp and to the remote DDM
application of SdU that provides the ability for remote callers to invoke the DFM DataAgent function to
execute specified routines on z/OS. The functions that may be performed using this facility include the
execution of TSO and REXX commands as well as user-written programs. Samples are provided that show
specific uses of this function. The DFM DataAgent enhancement represents a significant extension of the
functionality of the remote DDM application beyond basic data access.

A sample DataAgent is provided to invoke TSO functions, such as TSO CLISTs, REXX execs, or TSO
commands. Another sample DataAgent is provided to invoke SORT.

The following is an example of how the DFM DataAgent expands the capability of the remote DDM
application onz/OS. Before the DataAgent, the remote application was able to create and delete files, and
read, write, update, and delete data contained in files on z/OS. With the DataAgent, this capability is
broadened significantly by the ability to execute remote procedures on z/OS. A DataAgent job could be
invoked to preprocess data on z/OS by retrieving it from the files or other repositories and place it in the
file that the application will access. The DDM application could then process the data in the intermediate
file. When the DDM application has finished, a second DataAgent could be invoked to take the data in the
intermediate file and distribute the changes to the permanent files.

Scenarios for Distributed FileManager
DFM offers distributed data processing solutions for a broad range of diverse applications. The following
are a few scenarios of the many possibilities:

• Insurance industry

– Customer-written PC applications can present insurance data to underwriters.
– DDM client and DDM source systems can connect with DFM on a target z/OS system and remotely

access and update insurance information.
• Chemical industry

– Orders can be entered on an i5/OS system.

Source DDM on an i5/OS system can transmit orders to DFM providing access to z/OS data sets for
centralized tracking.

– An i5/OS system contains personnel data for security guards at one establishment. Daily updates of
personnel data can be retrieved from an z/OS or OS/390 system using DFM.

• Banking and finance industries

Foreign currency transactions on a branch i5/OS can be transmitted to a central z/OS system using
DFM.

10 z/OS: DFSMS Distributed FileManager Guide and Reference

Chapter 2. Accessing Data Sets with Distributed
FileManager

This chapter describes Distributed FileManager (DFM) support for z/OS data sets. It explains the types of
data sets you can access and describes the record, stream, and directory access functions you can use. It
also includes information about data set naming, data set usage, character sets, and file attributes.

Accessing z/OS Data Sets
This section introduces the data set access capabilities of DFM, including:

• DFM data set requirements
• Data set types supported by DFM
• File models supported by DFM
• Default file attributes

Data Set Requirements
DFM has the following data set requirements:

• New data sets created using DFM should be SMS-managed, although DFM supports non-SMS-managed
data set creation and access of existing non-SMS-managed data sets.

Note: The creation of non-SMS-managed data sets is not recommended, because DFM cannot save
attributes designed to improve performance or to enhance function. Non-SMS-managed data set
creation by DFM should only be used during the transition period between DFM installation and the
implementation of system-managed storage. Once this transition is complete the UNIT and VOLUME
parameters should be removed from DFM00. Refer to “Tuning Distributed FileManager Startup
Parameters in System PARMLIB” on page 38 for additional information on the tunable parameters in
DFM00.

• All data sets accessed must be cataloged in an integrated catalog facility catalog.
• All data sets accessed must reside on direct access storage.
• All data sets must be one of the supported types in the next section.

Data Set Types Supported
DFM supports the following z/OS data set types:

• Non-SMS-managed data sets
• Sequential access method (SAM) data sets

– Basic sequential access method (BSAM) data sets
– Queued sequential access method (QSAM) data sets

• Virtual Storage Access Method (VSAM) data sets

– Entry-sequenced data sets (ESDSs)
– Key-sequenced data sets (KSDSs)
– Fixed-length relative record data sets (RRDSs)
– Variable-length relative record data sets (VRRDSs)
– VSAM alternate indexes to ESDSs or KSDSs

• Basic partitioned access method data sets

© Copyright IBM Corp. 1993, 2017 11

– Partitioned data set extended (PDSE) members
– Partitioned data set (PDS) members
– Read-only support for PDSE directories
– Read-only support for PDS directories

Data Set Types Not Supported
DFM does not support:

• VSAM linear data sets (LDSs)
• Generation data groups (GDGs) and generation data sets (GDSs)
• Basic direct access method (BDAM) data sets
• Extended format sequential data sets
• z/OS UNIX System Services (z/OS UNIX) hierarchical file system (HFS) files
• Tape media
• z/OS File System (zFS)
• Large format sequential data sets

File Models Supported
The IBM Distributed Data Management (DDM) architecture helps client applications access server data by
defining common data access rules that can be used between different kinds of systems. DFM supports a
set of standardized DDM file models, that allow client applications to use the DDM architecture to
accessz/OS data. One or more DDM file models can be used to access each supported z/OS data set listed
below:

Record Files

• The DDM direct file model can be used to create and access VSAM RRDSs and VRRDSs.
• The DDM keyed file model can be used to create and access VSAM KSDSs.
• The DDM sequential file model can be used to create and access SAM data sets, VSAM ESDSs, VSAM

RRDSs and VRRDSs, PDSE members, and PDS members.
• DFM supports non-SMS-file creation.

Stream files

• The DDM stream file model can be used to create and access SAM data sets and PDSE members. In
addition, DFM supports stream access to record files.

• DFM supports non-SMS-file creation.

DFM also supports the following DDM file models, that have no exact equivalent on z/OS:

• A DDM alternate index file (AIF) can be used to create a VSAM alternate index and alternate index path,
and to access VSAM data through an alternate index path.

• A DDM directory can be used to access a PDSE directory, a PDS directory, or a directory consisting of all
target data sets selected by a source system.

Default File Attributes
Unless otherwise specified by a DDM record access application or changed through the appropriate
workstation command, z/OS files have the following default values:

• File hidden, system file, and file protect are set to FALSE.
• Get, insert, and modify capabilities are set to TRUE.

12 z/OS: DFSMS Distributed FileManager Guide and Reference

Default Delete Capability Attribute

The default delete capability attribute for the following categories is FALSE, unless you take action to
change the delete capability attribute to TRUE: All SMS-managed VSAM KSDSs, RRDSs, and VRRDSs,
which were not created through DFM, have a default delete capability of FALSE.

Changing the Delete Capability Attribute

You cannot issue a DDMOpen with delete access intent against data sets that have a delete capability
attribute of FALSE.

To change the delete capability attribute for a file, perform either of the following steps:

• Delete the file, and recreate it through a DDM record access application specifying DELCP in the
DDMCreate command.

• Add a DDMSetFileInfo command to the application to set the delete capability as desired.

Distributed FileManager Access Functions
This section describes the DFM support for the following categories of files and access functions:

• Record files and record access functions
• Stream files and stream access functions
• Directories and directory access functions

Record Files and Record Access
DFM supports four DDM record file classes, two sets of DDM access methods for record files, and a
complete range of DDM record access functions. The file classes, access methods, and access functions
you can use depends on the type of z/OS data set you want to access.

Record File Classes

The DDM file classes that you can use to create and access record files are the direct file, keyed file,
sequential file, and alternate index file classes. The DDM file classes correspond to the DDM file models
explained in “File Models Supported” on page 12.

DDM file classes can be used to access record files as follows:

• SAM data sets, VSAM ESDSs, PDSE members, and PDS members can be accessed through the
sequential file class.

Note: SAM data sets and PDSE members can also be accessed through the stream file class, as
explained in “Stream Files and Stream Access” on page 15.

• VSAM RRDSs and VRRDSs can be accessed through the sequential file class or the direct file class.
• VSAM KSDSs can be accessed through the keyed file class.
• A VSAM alternate index and associated alternate index path can be accessed through the alternate

index file class.

Access to Record Files

You can use DDM record access methods and DDM keyed access methods to access the following record
files.

• Record access methods can be used with these record files: SAM data sets; VSAM ESDSs, RRDSs, and
VRRDSs; PDSE members and PDS members.

• Keyed access methods can be used with these record files: VSAM KSDSs and DDM AIFs.
• Record and keyed access methods can only be used with record files and they cannot be used to access

stream files. The stream access method can be used with stream files and with record files. Stream
access to record files is described in “Stream Files and Stream Access” on page 15.

Accessing Data Sets with Distributed FileManager 13

Record Access Functions

The record access functions that can be performed from a remote system, and the data set types that can
use with the functions include the following. The list begins with the most restrictive functions that are
limited to certain SMS-managed data sets and ends with the most widely available functions that work
with any data set supported by DFM.

Modify Attributes

You can modify DDM attributes associated with the following record files:

• SMS-managed SAM data sets on disk
• SMS-managed VSAM ESDSs, KSDSs, RRDSs, or VRRDSs
• SMS-managed PDSE members

Create File

You can create the following record files:

• Non-SMS-managed data sets
• SMS-managed SAM data sets on disk
• SMS-managed VSAM ESDSs, KSDSs, RRDSs, or VRRDSs
• SMS-managed VSAM alternate indexes and alternate index paths

– An alternate index and alternate index path are created for you when you create a DDM alternate
index file (AIF).

– The VSAM base data set must meet certain requirements, see “Using VSAM Data Sets” on page 18.
• SMS-managed PDSE members

A PDSE will be created for you first, if it does not yet exist.
• PDS members, with these limitations:

– You can only create PDS members if the PDS already exists. If a new data set is required, a PDSE will
be created.

– SMS-managed PDSs are recommended, but you can also create PDS members in a non-SMS-
managed data set.

– PDS members do not support DDM attributes.

Delete File

You can delete the following record files:

• SMS-managed SAM data sets on disk
• SMS-managed VSAM ESDSs, KSDSs, RRDSs, or VRRDSs

If you delete a VSAM base data set with an alternate index, the alternate index will be deleted for
you.

• SMS-managed VSAM alternate indexes and alternate index paths

These are deleted for you when you delete DDM AIFs.
• SMS-managed PDSE members

Even if you delete the last member of a data set, the data set itself will not be deleted.
• PDS members (whether or not they are SMS-managed)

Even if you delete the last member of a data set, the data set itself will not be deleted.

Clear File

You can clear the following record files, whether or not they are SMS-managed:

• SAM data sets on disk
• Reusable VSAM ESDSs, KSDSs, RRDSs, or VRRDSs

14 z/OS: DFSMS Distributed FileManager Guide and Reference

• PDSE members and PDS members

Other Access Functions

You can use read, write, and positioning functions with the following record files, and you can rename
them or retrieve their DDM attributes:

• SAM data sets on disk
• VSAM ESDSs, KSDSs, RRDSs, or VRRDSs (reusable or nonreusable)
• DDM AIFs (and their associated VSAM base data sets)

DDM attributes are retrieved from the VSAM alternate index or VSAM base data set, depending on
the attribute.

• PDSE members and PDS members

Note: PDS members and non-SMS-managed data sets do not support their own DDM attributes. If you
retrieve DDM attributes, you will receive default values.

Access Restrictions

When using record files, the following data set access restrictions apply:

• Alias names for PDSE and PDS members are not supported by DFM. Only the true names can be used to
access a file. Load libraries cannot be handled properly due to loss of link edit attributes.

• When accessing multivolume data sets, backward processing and direct positioning is not supported,
some forms of insert processing to the end of the file are not supported, and retrieval and update
requests do not work if they span physical volumes.

See Appendix L, “Application Programming Considerations,” on page 99 for DDM record access
restrictions for multivolume data sets.

• If a local z/OS user updates a PDSE member that was created as a sequential file with associated DDM
attributes, all the attributes will be lost. Because loss of attributes can cause data conversion and
performance problems, local z/OSusers should avoid updating PDSE members that are accessed by
DFM.

• DFM cannot create or access SAM data sets or PDSE members with fixed record lengths greater than
32,760 or variable record lengths greater than 32,756. DFM cannot create or access VSAM data sets
with record lengths greater than 32,760.

Stream Files and Stream Access
DFM supports stream files in SAM data sets or PDSE members. It also supports stream access to record
files in additional types of z/OS data sets. This section only describes stream access to stream files and
stream access to record files. For information about record files and record access, see “Record Files and
Record Access” on page 13.

The stream files and access functions you can use from a remote system and the data set types you can
use with them, include:

Stream Files

Two types of z/OS data sets can be accessed using the DDM stream file class, or file model. You can
create, rename, delete, modify DDM attributes, and retrieve DDM attributes for stream files in these data
set types:

• SMS-managed SAM data sets on disk
• SMS-managed PDSE members

Stream access is provided on some workstation platforms (currently only DDM client) to allow commands
to access remote data transparently. For example, the DDM client EPM editor can be used to browse or
update anz/OS file in a transparent manner. In addition, the end user on the workstation can specify TEXT
on the DFMDRIVE ASSIGN or DFMDRIVE SETPARM commands to activate stream data conversion and
to influence the coded character set identifier (CCSID) used to tag newly created host files. See “Coded

Accessing Data Sets with Distributed FileManager 15

Character Set Identifiers” on page 21 for information on CCSID and “Data Conversion” on page 22 for
information on the DFMDRIVE ASSIGN or DFMDRIVE SETPARM commands.

Stream files created while the TEXT option is in effect will be converted to the target system code page
and tagged with the value specified by HOST_CCSID. If HOST_CCSID is omitted, they will be tagged with
the CCSID of the target system. See “Coded Character Set Identifiers” on page 21 for information on
supported CCSID code pages. Files for which BINARY is specified will be tagged with a CCSID of X'FFFF'.

Legacy data sets tagged with the wrong CCSID can be correctly tagged by running IDCAMS ALTER.
Otherwise, they will have to be retrieved using the target server defined code page as the PC_CCSID or by
using BINARY processing. For example, a text file that was stored as binary can be restored by retrieving
the file from a drive assigned with the BINARY parameter and copying it to a drive with the TEXT
parameter. The reverse is also true when restoring binary files that were stored as text files.

Files that are not tagged with a HOST_CCSID can be retrieved correctly by starting DFM onz/OS with the
CCSID parameter in SYS1.PARMLIB(DFM00) set to the CCSID of the file(s) to be retrieved. The DFM00
CCSID value applies to all untagged files for all client access. Alternatively, a HOST_CCSID can be
specified on an exception basis by using the workstation HOST_CCSID parameter on the DFMDRIVE
ASSIGN/SETPARM command. In either case, TEXT must be specified to trigger stream data conversion.

Stream Access

You can use the DDM stream access method to read stream data in the following files:

• Record files in nonreusable VSAM ESDSs, and
• Record files in VSAM KSDSs, RRDSs, or VRRDSs.

You can use the DDM stream access method to read, write, or clear stream data in the following files:

• Stream files in SAM data sets on disk
• Stream files in PDSE members
• Record files in SAM data sets on disk
• Record files in Reusable VSAM ESDS data sets
• Record files in PDSE members and PDS members

Access Restrictions

When using stream files, the following data set access restrictions apply:

• As a DFM user, you cannot use record file access methods to access stream files. However, as a local
z/OS user, you can use standard DFSMSdfp record access methods to access stream files.

• Alias names for PDSE and PDS members are not supported by DFM. Only the true names can be used to
access a file.

• If a local z/OS user updates a PDSE member that was created as a stream file with associated DDM
attributes, the attribute extension cell containing those attributes is lost. As a result, the PDSE member
loses its stream file properties and assumes a file class of sequential file. At the present time, there is
no way to correct this situation.

Directories and Directory Access
DFM supports DDM directories and read-only directory access functions. You can read the directory
entries themselves, and their associated DDM attributes, when you list these directories:

• Selected lists of target data sets
• PDSE directories and PDS directories

Note: For record files, the file size shows the number of records in the file. For stream files, the file size
shows the number of bytes in the file. (If the file size is unknown to z/OS, a size of 0 is shown.)

16 z/OS: DFSMS Distributed FileManager Guide and Reference

DFM does not support the MKDIR command for directories, nor does it support member names that do
not comply with z/OS PDSE or PDS naming restrictions. For example, a client file named AFILE could be
copied to an z/OS directory, but AFILE.TXT could not.

Renaming within an z/OS directory is possible, but the full z/OS path name must be given. For example,
you could perform a RENAME with the following command:

 RENAME IBMUSER.PDSE(A) IBMUSER.PDSE(B)

However, the following RENAME would not work:

 CD IBMUSER.PDSE (or DFMDRIVE ASSIGN IBMUSER.PDSE)
 RENAME A B

Selected Lists of Target Data Sets

From a remote system, you can use DFM to list various target data sets as follows:

• You can use a wild card to select a filtered list of target data sets, and you can view the list as if it were a
directory. For example, ‘userid.*.PAY’ lists all the source requester's PAY data sets.

• You can view lists of SAM, VSAM, PDSE, and PDS data sets. A directory can also include files with access
restrictions (see “Access Restrictions” on page 17).

PDSE Directories and PDS Directories

• If you select a PDSE or PDS as a directory, you can select file names that have a wild card in the member
name. For example, you can select the following file names:

MEM*, MEM, or null
• If you do not select a directory, you can select file names that have a wild card in the data set name or

member name, but not both. For example:

A.*, A.B, A(MEM*), or A(MEM).
• PDSEs, PDSs, and PDS members do not support their own DDM attributes, so default attributes are

displayed.

Access Restrictions

A directory can include hidden files, system files, migrated files, or unsupported files; alias names are not
shown. When using directories the following access restrictions apply:

• Hidden or system files

When you create files using DFM, you can mark them as hidden files or system files. Later, when you
list the directory, you have the option of excluding either of these kinds of files from the list.

• Migrated files

Directory lists will show default attribute values for migrated files, until they are recalled. When they
are recalled, they will show their true attribute values.

• Unsupported files

The directory lists all files with the names you selected, regardless of whether the data set type is
supported by DFM. If a file is unsupported, it is listed with default attributes. However, you cannot
use DFM to access the file itself.

• Alias names

Alias names for PDSE and PDS members are not supported by DFM. Only the true names are shown
when you use DFM to list a PDSE or PDS directory.

Accessing Data Sets with Distributed FileManager 17

Data Set Naming
DDM source applications use a file name parameter to specify target data set names on z/OS. If the
source file names conform to z/OS data set naming conventions, they can also be used as the target data
set names. However, if you want to use source file names which cannot be used on z/OS, you can
implement a name mapping function on the source system.

For example, when you create a SAM data set from a DDM client, you can also use the DDM client naming
convention on z/OS (an 8-character file name plus a 3-character extension). However, when you create a
PDSE member from DDM client, you might need a file name exit on the DDM client to map the DDM client
file names to the z/OS data set names. If you are using SMARTdata UTILITIES for a DDM client, the
Distributed FileManager component provides a user exit that lets you write a file name mapping program.

Wild Cards
A wild card is a character that can be used to represent zero or more characters or qualifiers in a data set
name. DFM supports the use of wild cards with commands that rename or delete files, or that retrieve
directory information. For example, you can use wild cards with the DOS commands DELETE, ERASE, or
DIR.

The following wild cards are supported by DFM:
%

Represents one and only one character for which a match is not required. For example:

• If the data set name is AB%.XY, then ABA.XY and ABC.XY match.
• If the data set name is A.B(M%), then A.B(MR) and A.B(MS) match.

*
Represents zero or more characters for which a match is not required. For example:

• If the data set name is A*.XY, then A.XY and ABC.XY match.
• If the data set name is A.B(M*), then A.B(M) and A.B(MEMX) match.

*
Represents zero or more qualifiers for which a match is not required. For example:

If the data set name is ABC.*.Z, then ABC.Z and ABC.X.Y.Z match.

*
Represents a member name for which a match is not required. For example:

If the data set name is A.B(*), then A.B(MEMX) and A.B(MEMY) match.

Wild Card Restrictions
When using wild cards, the following restrictions apply:

• Wild cards cannot be used to process a group of PDSE or PDS data sets. For example, ABC*(DE) is not
allowed. However, wild cards can be used to process a group of PDSE or PDS members, as shown
above.

• Only one wild card can be used in each data set name. For example, ABC%E%.XY and AB*.C(E%) are
not allowed.

• Wild cards cannot be used in the first character of the data set name. For example, %BCDE.XY and
*ABC.D are not allowed.

Using VSAM Data Sets
This section explains how to use alternate indexes to VSAM data sets.

Alternate Index Files

18 z/OS: DFSMS Distributed FileManager Guide and Reference

DFM support for VSAM alternate indexes is provided by a DDM file model called an alternate index file
(AIF). A DDM AIF provides access to a VSAM base data set (an ESDS or a KSDS), through a VSAM alternate
index path. You can define multiple AIFs over a single VSAM base data set. DFM will create an AIF with
RECSZ(4086 32600). The RECSZ parameter on the chosen DATACLAS will be ignored by IDCAMS.

You can choose a DDM AIF name with a maximum of 40 characters.

Base Data Sets

You can use DFM to create an alternate index over an ESDS or KSDS base data set. Before you can build
an alternate index, the base data set must meet the following requirements:

• DFM requirements:

– If the base was created using DFM, it must be a KSDS.
– If it was created by a local z/OS user, it can be an ESDS or a KSDS.

• VSAM requirements:

– The base data set must contain records.
– The base data set must be nonreusable. For more information, see “REUSE Attribute for VSAM Data

Sets” on page 19.

Access Restriction

After you create an alternate index file or files, you will have more than one access path to the same VSAM
base data set. At that point, you can access the base data set directly or through an alternate index path.
However, to avoid locking conflicts, you are advised to use only one access path at a time.

DFM uses VSAM data definition name (ddname) sharing, VSAM SHAREOPTIONS, and the DFM lock
manager to ensure data integrity. For simultaneous use of more than one access path at a time, consult
z/OS DFSMS Using Data Sets for additional information about VSAM sharing.

REUSE Attribute for VSAM Data Sets
This section explains how to use the REUSE attribute for VSAM data sets. VSAM data sets can be marked
nonreusable or reusable. A nonreusable data set cannot be reopened as a new data set. A reusable data
set can be used as a new data set each time it is opened, as if it were empty.

Nonreusable Attribute
A VSAM data set must be marked nonreusable before you can build an alternate index over it. This VSAM
requirement applies whether or not DFM is used to build the index.

If DFM is used to build the index, it automatically changes the base ESDS or KSDS to nonreusable, before
it creates the alternate index. It is also possible for an z/OS user to mark a data set nonreusable with the
IDCAMS ALTER command and the NOREUSE parameter.

Reusable Attribute
All VSAM data sets created by DFM are initially reusable. A VSAM data set must be marked reusable
before you can use DFM to clear any data set or write to a VSAM ESDS with the stream access method.

You can mark a data set reusable using the IDCAMS ALTER command with the REUSE parameter.

Note:

1. You must be a local z/OS user to use the ALTER command. You cannot turn on the reusable attribute
using DFM.

2. If you delete an alternate index file, you must use the ALTER command if you want to make the base
reusable again. DFM does not automatically change the base ESDS or KSDS back to reusable.

3. These restrictions are implemented because it is possible for additional indexes to be defined on z/OS,
which are not known to DFM.

Accessing Data Sets with Distributed FileManager 19

Figure 6 on page 20 is an example of an ALTER command that marks a data set reusable.

 //ALTER JOB ...
 //STEPA EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 ALTER -
 VSAM.DFM.DATASET -
 REUSE
 /*

Figure 6: ALTER Command that Marks a Data Set Reusable

For more information, see the ALTER command in z/OS DFSMS Access Method Services Commands.

Using PDSE and PDS Data Sets
DFM supports both PDSEs and PDSs. PDSEs are recommended because they have more capabilities than
PDSs.

Special PDSE and PDS Processing Considerations
You can only create PDS members as sequential record files using DFM. DDM client commands create
stream files and can be used to create new PDSE members, but cannot be used to create new PDS
members.

A DIR command shows PDSEs and PDSs as directories. However, as discussed in “Directories and
Directory Access” on page 16, DFM does not provide full directory support. Also, ambiguities might arise if
a PDSE or PDS name matches a prefix name. For example, you may have a PDSE named IBMUSER.DATA
and a sequential file named IBMUSER.DATA.SAMFILE.

Therefore, the following rules are provided to help you control PDSE and PDS member access. These
examples assume that the user ID is IBMUSER. Note that rules “1” on page 20 and “2” on page 20 take
precedence over any of the other rules.

1. A DFMDRIVE ASSIGN specifying a PDSE or PDS implies that all the subsequent file references for that
drive will be to members until a change directory (CD) command is issued, in which case see rule “2”
on page 20 (except that RENAME requires the full z/OS path name).

2. A change directory into a PDSE or PDS implies that the file names that follow will be members. For
example, CD "IBMUSER.MYDIR" implies that a reference to file A will be to member A of PDSE or PDS
"IBMUSER.MYDIR" (except that RENAME requires the full z/OS path name).

3. Explicit usage of parentheses in a fully qualified name implies a member. For example,
"IBMUSER.MYDIR(A)" refers to member A of the PDSE or PDS "IBMUSER.MYDIR".

4. A file name with a "\" preceding the last qualifier implies a member. For example, "IBMUSER.A.B\C"
refers to member C of the PDSE or PDS "IBMUSER.A.B" (except that RENAME requires the full z/OS
path name with parentheses around the member name).

5. A file name with a "." preceding the last qualifier implies a nonmember. For example, "IBMUSER.A.B.C"
refers to a file named "IBMUSER.A.B.C".

Wildcard Processing Exceptions
Note: Wildcard processing does not necessarily follow these rules. For example, COPY
S:IMBUSER.PDSE(A*) C:\MYDIR will copy using long filenames IBMUSER.PDSE(A...). Most likely you will
want to first issue the command, CD IBMUSER.PDSE, and then the command, COPY A* C:\MYDIR. This
will copy using the 1 to 8 character member names only.

20 z/OS: DFSMS Distributed FileManager Guide and Reference

Using PDSEs
Some of the advantages to using PDSEs are as follows:

• PDSEs support member-level DDM attributes, whereas member-level attributes do not exist for PDSs.
• PDSE members can contain stream files, whereas PDS members cannot. However, you can use stream

access to PDS members that contain record files.
• PDSEs use dynamic space allocation and reclamation, whereas PDSs need to be compressed

periodically with the IEBCOPY utility.
• PDSEs are always SMS-managed. PDSs are not necessarily SMS-managed.

Using PDSs
Some of the limitations of using PDSs are as follows:

• PDSs must be compressed periodically using the IEBCOPY utility.

– Space used by PDS members that are replaced or deleted cannot be reused until the data set is
compressed. The more you update a PDS, the more you need to compress it.

– For more information on IEBCOPY, see z/OS DFSMSdfp Utilities.
• You can only create PDS members if the PDS already exists. If it does not exist, a PDSE and PDSE

member will be created instead.
• PDS members do not support their own DDM attributes, so DDM default attributes are assumed.

Coded Character Set Identifiers
DFM supports a DDM attribute called the coded character set identifier (CCSID). The CCSID attribute
specifies an identifier registered with the IBM Character Data Representation Architecture (CDRA) of an
encoding scheme for coded character set data. The CCSID attribute is a 16-bit number identifying a
specific set of encoding scheme identifier, character set identifiers, code page identifiers, and additional
coding-related required information that uniquely identifies the coded graphic character representation
used. For example, if a file has a CCSID of 437, it is in USA ASCII format. If it has a CCSID of 297, it is in
the French EBCDIC format. The meaning of each CCSID is defined in the IBM CDRA. See Character Data
Representation Architecture Reference and Registry and Character Data Representation Architecture
Overview for more information.

All single-byte code page conversions supported by CDRA are supported. DFM provides built-in support
for data conversions between code pages 500 and 850. CDRA needs to be activated for code page
conversions that are outside the DFM built-in support range. The special PC code page values of 0 and
65535 prevent stream data conversion. These values are not valid with the TEXT parameter because not
providing the PC code page makes it impossible to determine the delimiters that text processing requires.
The special host code page value of 65535 (or BINARY) prevents stream data conversion.

Setting the CCSID Attribute
You can set the CCSID attribute locally or remotely. Note that setting the CCSID attribute identifies the
character set used by the file, it does not convert the file to that character set.

Setting the CCSID from a Remote System

When you create a new z/OS data set from a remote system, DFM supports the assignment of a CCSID at
the time of creation. Also, if a z/OS data set already exists, DFM supports modification of the CCSID from a
remote system. You can assign a CCSID to any SMS-managed data set supported by DFM, except a PDS.

Setting the CCSID from a Local System

If a z/OS data set is SMS-managed (and not a PDS), a local system user can run the IDCAMS ALTER
command to set or change the CCSID, without using DFM.

Accessing Data Sets with Distributed FileManager 21

Figure 7 on page 22 is an example of the command.

 //ALTER JOB ...
 //STEPA EXEC PGM=IDCAMS
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 ALTER -
 USER1.DFM.DATASET -
 CCSID(X'01F4')
 /*

Figure 7: IDCAMS ALTER Command

In Figure 7 on page 22, the CCSID parameter sets the coded character set identifier to X'01F4'. For more
information, see the ALTER command in z/OS DFSMS Access Method Services Commands.

Data Conversion
Stream Files: DFM offers limited support of data conversion for stream files. DFM APAR OW16828 for
DFSMS/MVS 1.3 provides enhancements to end users who install DDM client enhancements, as described
in informational APAR II09011. These DDM client end users can now retrieve z/OS stream data and have
it converted to the single-byte code page associated with their workstation.

Using commands equivalent to DFM/2 commands DFMDRIVE SETPARM and DFMDRIVE ASSIGN, the DDM
client end user can specify z/OS target parameters that will trigger stream data conversion. The z/OS
target parameters are as follows:
BINARY

Specifies no stream data conversion. BINARY is the default.
TEXT

Specifies stream data conversion and tags new stream file with the workstation CCSID (PP_CCSID).
The current workstation CCSID is automatically passed in by the DDM client, but may be overridden by
the PC_CCSID parameter. When TEXT is specified, the following parameters are also valid:

• CRLF maintains record boundaries using carriage return and line feed as the delimiters. CRLF is the
default.

• NL maintains record boundaries using the new line character as the delimiter.
• LF maintains record boundaries using the line feed character as the delimiter.
• NOEOL does not maintain record boundaries and treats any delimiters or padding as data.

PC_CCSID=ddddd
Specifies the workstation CCSID, ddddd is the decimal CCSID. The CCSID is ignored for BINARY
processing and new files are tagged with a CCSID of X'FFFF' to indicate they are not converted. The
PC_CCSID setting does not affect the retrieval of binary files, only the TEXT parameter triggers data
conversion.

HOST_CCSID=ddddd
Specifies the CCSID used for stream files created on the target system or for legacy data sets with no
explicit CCSID defined. ddddd is a decimal CCSID from 0 to 65535. A CCSID value of 65535 prevents
steam data conversion. If omitted, text files are created or retrieved using the current CCSID from
SYS1.PARMLIB(DFM00).

The TEXT parameter triggers stream data conversion when required and when the combination of CCSIDs
is supported by CDRA.

If the file is not tagged with a CCSID and TEXT processing is specified by the workstation, legacy files not
tagged with a specific CCSID will default to the CCSID as specified in SYS1.PARMLIB(DFM00).

The HOST_CCSID parameter is not used to override an explicit CCSID associated with a file. It is only used
to tag new files or to access files that have no CCSID set.

Record Files

22 z/OS: DFSMS Distributed FileManager Guide and Reference

DFM does not provide data conversion services for record files. When DFM stores record files on z/OS, the
data is stored in the format sent by the source. If a target system application requires a different data
format, data conversion can be done by a source application.

For example, if data is sent from a DDM client source system in ASCII format, it requires conversion to
EBCDIC before it can be read by a standard z/OS application. This conversion from ASCII to EBCDIC can
be done by the conversion utility provided by the Distributed FileManager component of SMARTdata
UTILITIES.

Associated DDM Attributes
Associated DDM attributes are z/OS data set attributes that are defined in DDM architecture. Examples of
associated DDM attributes are file size, lock options, or end-of-file offset for byte-stream files. Associated
DDM attributes are not exclusive to DDM, but can be common to other applications that access the same
data sets.

DFM creates associated DDM attributes when it creates new data sets or changes the attributes of
existing data sets. When copying, moving, or backing up data sets that have associated DDM attributes, it
is important that you use recommended data moving utilities (see “Propagating DDM Attributes” on page
25).

The remainder of this section explains the applications and commands you can use to determine if a z/OS
data set has associated DDM attributes, and the utilities you can use to propagate associated DDM
attributes.

Listing DDM Attributes
You can use one of the following tools to determine whether a data set has associated DDM attributes:

• ISMF data set list application
• IDCAMS DCOLLECT command
• IDCAMS LISTCAT command.

However, these tools cannot determine which specific DDM attributes are associated with a z/OS data set,
nor the values of the DDM attributes (except for the CCSID attribute).

Using the ISMF Data Set List

With Interactive Storage Management Facility (ISMF), you can use the data set list application to
determine whether SAM or VSAM data sets have associated DDM attributes, and the value of the CCSID
attribute.

Using the FILTER, LIST, SORT, or VIEW command, select specified data sets and sort on the DDMATTR
field in column 34 and the CCSID DESCRIPTION field in column 35. The DDMATTR field indicates whether
or not a data set has DDM attributes and the CCSID DESCRIPTION field gives the value of the CCSID.
Figure 8 on page 24 is an example of the resulting output.

Accessing Data Sets with Distributed FileManager 23

 DGTLGP11 DATA SET LIST
 COMMAND ===> SCROLL ===> PAGE
 Entries 1-6 of 6
 ENTER LINE OPERATORS BELOW: Data Columns 34-35 of 35
 LINE DDM
 OPERATOR DATA SET NAME ATTR CCSID DESCRIPTION
 ---(1)---- ------------(2)------------ (34) ------(35)-------
 DATASET.NUMBER.A YES JAPANESE PC DATA
 DATASET.NUMBER.B NO SPANISH PC DATA
 DATASET.NUMBER.C YES ID=00255, NO DESC
 DATASET.NUMBER.D --- -----------------
 DATASET.NUMBER.E NO -----------------
 DATASET.NUMBER.F --- GERMAN PC DATA
 ---------- ------ ----------- BOTTOM OF DATA ----------- ------ ----
 USE HELP COMMAND FOR HELP; USE END
COMMAND TO EXIT.

Figure 8: ISMF Data Set List Columns 34-35

For more details, see z/OS DFSMS Using the Interactive Storage Management Facility.

Using the IDCAMS DCOLLECT Command

You can use the IDCAMS DCOLLECT command to determine if SMS-managed data sets have associated
DDM attributes and the value of the CCSID attribute. In the DCOLLECT command output, the DCDDDMEX
flag indicates if a data set has associated DDM attributes and the DCDCCSID field contains the value of
the CCSID attribute.

Using the IDCAMS LISTCAT Command

You can use the IDCAMS LISTCAT command to determine if SAM or VSAM data sets have associated DDM
attributes and the value of the CCSID attribute. Figure 9 on page 24 uses the LISTCAT command to
generate a report on a data set named IBMUSER.DFMDATA:

 //LISTCAT JOB
 //STEP EXEC PGM=IDCAMS
 //**
 //* PURPOSE: LIST A CATALOG AND A CLUSTER
 //***
 //SYSPRINT DD SYSOUT=*
 //AMSDUMP DD SYSOUT=*
 //SYSIN DD *
 LISTCAT LVL(IBMUSER.DFMDATA) ALL
 /*

Figure 9: LISTCAT Command

Figure 10 on page 25 shows the resulting output. The DDMEXIST field contains the value TEXT,
indicating that associated DDM attributes exist. And the CCSID field contains the value X'01F4', NLS
EBCDIC STANDARD.

24 z/OS: DFSMS Distributed FileManager Guide and Reference

IDCAMS SYSTEM SERVICES TIME:08:10
12/02/92
PAGE 1
NONVSAM ------- IBMUSER.DFMDATA.TEST
 IN-CAT --- SYS1.ICFCAT.VSYS306
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------1990.016
 RELEASE----------------2 EXPIRATION------0000.000
 SMSDATA
 STORAGECLASS -----NORMAL MANAGEMENTCLASS--PRIMARY
 DATACLASS --------(NULL) LBACKUP ---1992.296.0129
 VOLUMES
 VOLSER------------SYS309 DEVTYPE------X'3010200E' FSEQN------------------0
 ASSOCIATIONS--------(NULL)
 ATTRIBUTES
 STRIPE-COUNT------(NULL) CCSID------------X'01F4', NLS EBCDIC STANDARD
 DDMEXIST TEXT
IDCAMS SYSTEM SERVICES TIME:08:10
12/02/92
PAGE 2
 THE NUMBER OF ENTRIES PROCESSED WAS:
 AIX -------------------0
 ALIAS -----------------0
 CLUSTER ---------------0
 DATA ------------------0
 GDG -------------------0
 INDEX -----------------0
 NONVSAM ---------------1
 PAGESPACE -------------0
 PATH ------------------0
 SPACE -----------------0
 USERCATALOG -----------0
 TAPELIBRARY -----------0
 TAPEVOLUME ------------0
 TOTAL -----------------1
 THE NUMBER OF PROTECTED ENTRIES SUPPRESSED WAS 0
IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

Figure 10: IDCAMS LISTCAT Output Showing DDMEXIST and CCSID Fields

Propagating DDM Attributes
To reliably propagate DDM attributes when moving their associated files, you must use recommended
data movers.

For more information on IMPORT and EXPORT, see z/OS DFSMS Access Method Services Commands. For
more information on DFSMSdss, see z/OS DFSMSdss Storage Administration. For more information on
IEBCOPY, see z/OS DFSMSdfp Utilities.

SAM and VSAM Data Sets

You can use the IDCAMS IMPORT and EXPORT commands to copy or move SAM and VSAM data sets. You
can use the DFSMSdss data mover to back up, retrieve, or migrate SAM and VSAM data sets. You must use
the DFSMSdss data mover if the data sets are managed by DFSMShsm.

These data movers automatically propagate associated DDM attributes when moving data sets to other
volumes or other systems. DDM attributes associated with SAM and VSAM data sets are not propagated in
the following situations:

• If you move data sets to a system that does not support DFM
• If you use IDCAMS IMPORT with the INTOEMPTY parameter
• If you use the IDCAMS REPRO command

PDSE Members

You can use the IEBCOPY utility or the DFSMSdss data mover to copy, move, or back up PDSE members.
With IEBCOPY you can create unloaded copies directly to tape or disk. You must use the DFSMSdss data
mover if the data sets are managed by DFSMShsm. These data movers automatically propagate DDM

Accessing Data Sets with Distributed FileManager 25

attributes associated with PDSE members. DDM attributes associated with PDSE members are not
propagated in the following situations:

• If you copy or move individual records from one member to another
• If the input data set does not completely replace the output data set
• If you move a PDSE member to a system that does not support DFM
• If you convert a PDSE to a PDS
• If you load an unloaded PDSE to a PDS
• If you copy or move a PDSE member to a PDS

If you move or copy a PDS member or a PDS data set to a PDSE, default DDM attributes will be assigned to
the resulting PDSE members.

Accessing Data Using the DataAgent Parameters
This section describes accessing data using the DataAgent parameters. A DataAgent can only be started
from a DDM application from a client workstation. You can use the DDMOpen function to get a filename
suffix that can be used to start DFM DataAgent processing on z/OS. The DDMClose function terminates
DataAgent processing. It issues the DDM commands CLOSE and DELDCL, which actually terminates agent
processing by invoking the exit with the DELDCL code point in the parameter list, if requested.

Using the DFM DataAgent Filename Suffix Parameters
The DFM DataAgent filename suffix parameters supported by z/OS are the following:

Using the AGENT(agent_name<,procedure_parameter>)
This parameter specifies the name of the agent that is invoked when a file is declared (at DDMOpen) and,
optionally, when the file declaration is deleted (at DDMClose). The agent_name specifies the name of a
member that must exist in SYS1.PROCLIB. Parameters can optionally be provided for symbolic
substitution in the PROCLIB member.

Allocation will run under the authorization assigned to started tasks. The agent (running under the user's
authorization) may have to use dynamic allocation to allocate files that cannot be allocated by started
tasks.

Because agents begin as started tasks, unless DFM00 specifies RESTRICT_START(NO), the first 3
characters of the procedure (or agent) must be "DFM."

The maximum length of the agent name and its parameters is 107 bytes. Each parameter in the list of
procedures is subject to the z/OS limit of 44 bytes.

The agent runs synchronously. If the PROCLIB member has multiple steps, any file name changes or
return code settings will be propagated to the later steps and will only be returned to DFM after the last
step has executed.

Using the PARM(agent_parameter_list)
This parameter is used to pass parameters to the agent routine when it begins to execute in the
DataAgent address space. Parameters are converted to upper case and concatenated to any parameters
provided in the PROCLIB member.

The maximum length of the parameters in bytes is limited only by the space available to the filename
suffix.

If PARM is specified, the PROCLIB member must contain the JCL statements as provided by the sample
DFMX001 that specifies the DFMINIT parameter so as to run a DFM DataAgent address space
initialization routine as the first program in the address space. This causes DFM to pass a supplementary

26 z/OS: DFSMS Distributed FileManager Guide and Reference

run time parameter list to the DataAgent routine and allows the routine to return an error code and
additional reason codes to DFM. The agent parameter list specified is concatenated with DFMINIT before
the DataAgent routine invoked.

This parameter is ignored if AGENT is omitted.

Using the PGM(program_name)
This parameter specifies the name of the program (DataAgent routine) to be invoked by DFM after
initialization. If omitted, the program invoked will default to the agent name requiring that you have
identically named z/OS load modules and PROCLIB members.

This parameter is ignored if AGENT is omitted.

Using the START(job_name<,job_parameters>)
This parameter specifies the name of the PROCLIB member representing a job or procedure to be started
asynchronously. Unless DFM00 specifies RESTRICT_START(NO), the first 3 characters of the procedure or
command must be "DFM."

Optional parameters can also be provided. The z/OS limit for the total length of the job name and its
parameters is 124 bytes.

DFM will verify that an address space for running the procedure was created, but will not verify that the
procedure exists or that it ever completes successfully. That is, the started job runs asynchronously.

It is possible to run some existing PROCLIB members that may not have particular initialization
requirements by using only the AGENT keyword. However, it is not recommended because return codes
will not be passed back to DFM. It is expected that there will usually be a need for extended parameter
passing. The AGENT parameter should be used in conjunction with the PARM and PGM parameters even if
the PARM parameter is the null value of PARM() or the PGM name is the same as the agent name.

DFM imposes a limit of 256 bytes for the file name and file name suffix and for the total length of the
parameters (AGENT, PARM, PC_CCISD, START, and so on) that can be passed.

As with the other filename suffix parameters, unidentified or misspelled keywords are ignored and the
first (leftmost) is used in case of duplicate keywords.

Accessing Data Sets with Distributed FileManager 27

28 z/OS: DFSMS Distributed FileManager Guide and Reference

Chapter 3. Customizing z/OS for Distributed
FileManager

This chapter is about customizing z/OS for Distributed FileManager(DFM). It discusses how to enable DFM
to function in a network as a DDM target (server) providing remote access to data sets for DDM source
implementations (clients). DFM does not support DDM source capability.

What Is In This Chapter?
Customizing z/OS for Distributed FileManager includes several tasks. These tasks involve establishing
APPC/MVS, VTAM, DFM, and other system information so that DFM can provide remote access to data
sets. The objective of this chapter is for you to understand the tasks involved and how they are
interrelated.

Summary of Customizing Tasks
• APPC/MVS customizing tasks

– Defining PARMLIB start parameters for APPC/MVS
– Creating the APPC/MVS transaction program (TP) profile data set (if not already existent)
– Adding DFM TP profile information to the TP profile data set
– Creating the APPC/MVS side information data set
– Defining PARMLIB start parameters for the APPC/MVS scheduler

• VTAM customizing tasks

– Defining the local LU to VTAMLST
– Defining the logon mode table in VTAMLIB
– Defining the local LU and logon mode on a partner system

• DFM customizing tasks

– Installing PARMLIB start parameters for DFM
– Activating the PROCLIB startup procedure for DFM
– Verifying program property table (PPT) entries for DFM

• Setting up automatic class selection (ACS) routines
• Defining TP access security

Interrelationships of Customizing Tasks
Figure 11 on page 31 shows some of the interrelationships among tasks involved in customizing z/OS for
DFM. Each numbered box in the figure represents a task. To simplify the diagram, only sample parameters
that show relationships are shown. The lines and arrows between boxes show relationships between
parameters, members, or data set names.

 1 Adding the DFM TP profile to the TP profile data set

 2 Creating the APPC/MVS side information data

 3 Defining a local LU and logon mode table to VTAMLST

 4 Defining logon mode table to VTAMLIB

 5 Starting VTAMLST and VTAMLIB

 6 Startup procedure for DFM

© Copyright IBM Corp. 1993, 2017 29

 7 Defining startup parameters for APPC/MVS

 8 Defining startup parameters for the APPC/MVS transaction scheduler

 9 Tunable startup parameters for DFM

 10 Defining partner DDM client local LU and logon mode information

 11 Operator command for starting APPC/MVS

 12 Operator command for starting the APPC/MVS transaction scheduler

 13 Operator command for starting DFM

30 z/OS: DFSMS Distributed FileManager Guide and Reference

Figure 11: Interrelationships of Customizing Tasks for Distributed FileManager

APPC/MVS Customizing Tasks
APPC/MVS customizing tasks include:

Customizing z/OS for Distributed FileManager 31

• Defining PARMLIB start parameters for APPC/MVS
• Creating the APPC/MVS TP profile data set (if not already existent)
• Creating the DFM TP profile
• Creating the APPC/MVS side information data set
• Defining PARMLIB start parameters for the APPC/MVS transaction scheduler

Defining PARMLIB Start Parameters for APPC/MVS
You define APPC/MVS start parameters in system PARMLIB member APPCPMxx (for example,
SYS1.PARMLIB(APPCPMxx)). The APPC/MVS start parameters contain information for establishing and
controlling APPC conversations on the system. They identify the local LU to be used for APPC
conversations, and the TP profile and side information data sets to be used by APPC/MVS.

On z/OS, Distributed FileManager conversations flow over the LU defined as the base LU in APPCPMxx.
The TP profile data set provides APPC/MVS with the DFM TP profile information. The TP profile
information enables DFM to participate in APPC LU 6.2 conversations.

You can control APPC/MVS start parameters by using different versions of APPCPMxx. Each version can
have different values for the start parameters. For example, one version can omit an LU name that is
included in another version.

APPC/MVS is started by a system operator command. The operator command (which can be part of initial
program load) identifies APPCPMxx (see “Starting APPC/MVS” on page 45). Both APPC/MVS and the
APPC/MVS transaction scheduler (also started by operator command) must be active before DFM LU 6.2
conversations can take place.

Using the APPC/MVS LUADD Definition

Use the APPC/MVS LUADD definition to define the start parameters in APPCPMxx. With LUADD
parameters, you can add, modify, and delete LU information. You can also change the defined names for
both the TP profile and the side information data sets.

Figure 12 on page 32 is an example of the basic LUADD definition that should be included in APPCPMxx.
This example can be found in system SAMPLIB member GDEAPPC (for example,
SYS1.SAMPLIB(GDEAPPC)), or see “GDEAPPC” on page 49. Also see system SAMPLIB members
APPCPMRX and APPCPMXX for more details.

 LUADD
 ACBNAME(MVSLUO1) ◄─── LU name
 BASE
 TPDATA(SYS1.APPCTP) ◄─── APPC/MVS VSAM TP data set
 SIDEINFO DATASET(SYS1.APPCSI) ◄─── APPC/MVS VSAM SI data set

Figure 12: Basic LUADD Definition

The parameters in Figure 12 on page 32 do the following:
ACBNAME(MVSLU01)

Defines the name of the LU as MVSLU01. The name specified must be the same as the LU name
specified to VTAM.

BASE
Indicates that the LU specified for ACBNAME (MVSLU01 in this case) is the base LU for APPC/MVS.
The base LU is associated with the APPC/MVS transaction scheduler. APPC LU 6.2 conversations take
place across the base LU.

TPDATA(SYS1.APPCTP)
Defines the name of the TP profile data set as SYS1.APPCTP. The name specified must match the
name of the APPC/MVS TP profile data set.

32 z/OS: DFSMS Distributed FileManager Guide and Reference

SIDEINFO DATASET(SYS1.APPCSI)
Defines the name of the VSAM KSDS side information data set as SYS1.APPCSI. The name specified
must match the name of the APPC/MVS side information data set.

The LUADD SCHED parameter (omitted in the above example) specifies the name of the APPC/MVS
transaction scheduler. If omitted, it defaults to the value SCHED(ASCH).

For more information on using the LUADD definition, see z/OS MVS Planning: APPC/MVS Management.

Creating the Distributed FileManager TP Profile
APPC/MVS enables DFM to communicate across a computer network with DDM source implementations.
To use APPC/MVS services, DFM must be set up as an APPC/MVS TP. Every TP must have a TP profile
contained in the APPC/MVS TP profile data set. The TP profile consists of scheduling and security
information needed to run the TP.

Allocating a VSAM KSDS for the TP Profile

If you are not already using APPC/MVS, you must allocate a VSAM KSDS in the system library (for
example, SYS1.APPCTP) where APPC/MVS TP profile information can be stored. The name of the VSAM
KSDS data set must match the name defined in system PARMLIB member APPCPMxx. A sample of
allocating the VSAM KSDS is in system SAMPLIB member ATBTPVSM (for example,
SYS1.SAMPLIB(ATBTPVSM)).

For more information on allocating a VSAM KSDS, see z/OS DFSMS Access Method Services Commands.

Adding the TP Profile to the VSAM KSDS

This discussion assumes that a VSAM KSDS already exists for TP profile information.

The APPC/MVS administration utility (ATBSDFMU) has commands for creating and modifying APPC/MVS
TP profiles in the VSAM KSDS. You can use the TPADD command to add a TP profile. For a sample of using
TPADD to add a variety of TP profiles, see system SAMPLIB member ATBUTIL (for example,
SYS1.SAMPLIB(ATBUTIL)).

Figure 13 on page 33 shows a job step that adds a DFM TP profile to SYS1.APPCTP using the TPADD
command. This example can be found in system SAMPLIB member GDETPDEF (for example,
SYS1.SAMPLIB(GDETPDEF) and in “GDETPDEF” on page 53.

 //STEP EXEC PGM=ATBSDFMU
 //SYSPRINT DD SYSOUT=*
 //SYSSDOUT DD SYSOUT=*
 //SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
 //SYSIN DD DATA,DLM=XX
 TPDELETE
 TPNAME(^X'07'001)
 TPADD
 TPNAME(^X'07'001) <- TP key section
 ACTIVE(YES) <- TP attribute section
 TPSCHED_DELIMITER(##) <------. TP scheduler section
 CLASS(A) |
 JCL_DELIMITER(ENDJCL) |
 //GDEDFM JOB MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A |
 //GDEDFM EXEC PGM=GDEISASB |
 //* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
 //* DOESN'T HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
 //*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
 //*CDRATRC DD DSN=SYS1.CDRATRC2,DISP=SHR <- CDRA API TRACE OUTPUT
 //*SYSOUT DD DSN=SYS1.CDRAOUT2,DISP=SHR <- C RUNTIME MESSAGES
 //SYSOUT DD DUMMY <- C RUNTIME MESSAGES (NO-OP)
 ENDJCL |
 ## <------'
 XX

Figure 13: TPADD Command Example

Customizing z/OS for Distributed FileManager 33

As Figure 13 on page 33 shows, each TP profile contains three sections.
TP profile key section

Consists of a TP name and a TP level (because TP level is not included in this example, TP Level
defaults to SYSTEM).

• The TP name for DFM must be ^X'07'001
• TP level identifies which entities RACF authorizes to access the DFM TP. It can be one of the

following:
Level

Access
SYSTEM

Any user can attach the TP. This is the default if no TP level is used.
GROUP

Any member of a predefined group of users can attach the TP.
USER

A single user can attach the TP.

TP attributes section
Consists of ACTIVE(YES), which indicates that the TP status is active. If the status is set to
ACTIVE(NO), the TP cannot be scheduled.

TP scheduler section
Has the following information:

• Provides the JCL used to run the DFM TP. This example shows sample JOB and EXEC statements.
• SCHED(A) indicates the APPC/MVS transaction scheduler for the DFM TP.
• GDEDFM should have either no region size or a region size of 0K to contain cached stream files.
• GDEISASB must be specified as the program to be executed on the EXEC statement.

Note: The language environment (LE) is required to use CDRA. If LE is installed and is not in the link
list, SYS1.PROCLIB(DFM) and SYS1.SAMPLIB(GDETPDEF) should be modified so their STEPLIB DD
statements refer to the proper LE run time library. Refer to DFMREADM in SYS1.SAMPLIB for details.
SYSOUT and CDRATRC files can be allocated as RECFM=FBA, LRECL=133, and DSORG=PS for use in
diagnosing CDRA problems.

TP profile definition parameters not included in this example are set to default values. For more details
about adding and modifying TP profile information, see z/OS MVS Planning: APPC/MVS Management.

Creating the APPC/MVS Side Information Data Set
APPC/MVS requires that a VSAM KSDS data set be allocated for the side information data set. The
APPC/MVS side information data set contains translations of symbolic destination names used by TPs
when they issue outbound allocate requests.

Because DFM is a DDM target only and therefore does not issue outbound allocate requests, the side
information data set does not need to contain any information. The name used for the SIDEINFO
parameter in system PARMLIB member APPCPMxx must match the side information data set name.

Sample JCL for allocating the side information KSDS data set can be found in system SAMPLIB member
ATBSIVSM (for example, SYS1.SAMPLIB(ATBSIVSM)). For information about creating side information,
see z/OS MVS Planning: APPC/MVS Management.

Defining PARMLIB Start Parameters for the APPC/MVS Scheduler
The APPC/MVS transaction scheduler (ASCH) initiates and schedules TPs in response to inbound requests
for conversations. Start parameter values in system PARMLIB member ASCHPMxx (for example,
SYS1.PARMLIB(ASCHPMxx)) define and modify TP scheduling classes and other TP scheduling
characteristics to ASCH.

34 z/OS: DFSMS Distributed FileManager Guide and Reference

ASCH is started by a system operator command. The operator command (can be part of initial program
load) identifies the ASCHPMxx member (see “Starting the APPC/MVS Transaction Scheduler” on page
45). Both APPC/MVS (also started by operator command) and ASCH must be active before DFM LU 6.2
conversations can take place.

You can use an APPC/MVS CLASSADD definition to define the ASCH start parameters in ASCHPMxx, as
shown in the following example. This example can be found in system SAMPLIB member GDEASCH (for
example, SYS1.SAMPLIB(GDEASCH)) or in “GDEASCH” on page 50.

 CLASSADD CLASSNAME(A)
 MSGLIMIT(1000) MAX(10) MIN(1) RESPGOAL(1)

The parameters in this example do the following:
CLASSADD CLASSNAME(A)

Defines a class of transaction initiators to ASCH. A transaction initiator is an entity, such as DFM, that
functions as an APPC/MVS TP. TPs in the same class should have similar characteristics such as run-
time, priority, schedule-type, and security.

The CLASSNAME parameter defines the class name as A. It must match the class name used in the TP
profile for DFM.

MSGLIMIT(1000)
Defines 1000 as the maximum number of messages in the message log data set for TPs in this class.

MAX(10)
Defines 10 as the maximum number of transaction initiators allowed for this class.

MIN(1)
Defines 1 as the number of transaction initiators in this class that will be started when ASCH is
started.

RESPGOAL(1)
Defines 1 second as the system response time goal for TPs running in this class.

For more information about defining ASCH and about scheduling TPs, see z/OS MVS Planning: APPC/MVS
Management.

VTAM Customizing Tasks
Customizing VTAM for DFM includes defining the local LU to VTAMLST, setting up the logon mode table in
VTAMLIB, and establishing local LUs and logon mode definitions on partner systems.

Defining the Local LU to VTAMLST
When VTAM is initialized on an z/OS system, local LUs are activated based on information in the system
VTAMLST library. To define the local APPC/MVS LU to VTAM, use a VTAM application (APPL) definition in
the VTAMLST library that is defined in the VTAM start procedure. The VTAM APPL definition:

• Names the local APPC/MVS LU
• Sets up defaults for the LU
• Specifies the name of the logon mode table that contains the logon mode used by the LU
• Defines security for the LU

Figure 14 on page 36 is an example of a VTAM APPL definition. This example can be found in system
SAMPLIB member GDEAPDEF, for example, SYS1.SAMPLIB(GDEAPDEF), or see “GDEAPDEF” on page
49.

Customizing z/OS for Distributed FileManager 35

 MVSLU01 APPL ACBNAME=MVSLU01, ◄─── ACBNAME (also
APPC/MVS LUADD)
 APPC=YES,
 AUTOSES=0,
 DDRAINL=NALLOW,
 DMINWNL=5,
 DMINWNR=5,
 DRESPL=NALLOW,
 DSESLIM=10,
 LMDENT=19,
 MODETAB=LOGMODES, ◄─── VTAM Logon Mode Table name
 PARSESS=YES,
 SECACPT=CONV,
 SRBEXIT=YES,
 VPACING=1

Figure 14: VTAM APPL Definition

The ACBNAME and MODETAB parameters in this example do the following:
ACBNAME=MVSLU01

Defines the local APPC/MVS LU name as MVSLU01. The LU name specified must match the local LU
name defined in PARMLIB member APPCPMxx.

MODETAB=LOGMODES
Defines the name of the logon mode table as LOGMODES. This parameter is optional. Including it,
however, allows you to make additional logon mode definitions known to VTAM. This is required if the
logon mode name specified by the partner system is not supplied in the VTAM default logon mode
table ISTINCLM.

The name for the logon mode table name must match the name of a defined in VTAMLIB.

For more information about VTAM APPL definitions, see z/OS MVS Planning: APPC/MVS Management.

Defining APPC/MVS Logon Mode Entry in VTAMLIB
A logon mode is a set of parameters and protocols that determines the communication characteristics of
a VTAM session. Logon modes are entries in a logon mode table contained in the system VTAMLIB library.

APPC/MVS requires a logon mode entry in a logon mode table. The logon mode table containing the
APPC/MVS logon mode entry must be assembled and linked into the VTAMLIB library defined by the
VTAM start procedure. System SAMPLIB member ATBLJOB (for example, SYS1.SAMPLIB(ATBLJOB))
provides sample JCL for assembling and linking a logon mode table.

Figure 15 on page 37 is an example of a logon mode table containing several logon mode entries. This
example can be found in system SAMPLIB member GDELOGMD (for example,
SYS1.SAMPLIB(GDELOGMD)) or see “GDELOGMD” on page 51.

36 z/OS: DFSMS Distributed FileManager Guide and Reference

LOGMODES MODETAB ◄─── VTAM APPL LOGMODE table name
 EJECT
**
 TITLE 'SNASVCMG' *
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X'13',TSPROF=X'07', *
 PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', *
 RUSIZES=X'8585',ENCR=B'0000', *
 PSERVIC=X'060200000000000000000300'
**
 TITLE 'QPCSUPP ' *
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
QPCSUPP MODEENT LOGMODE=QPCSUPP,FMPROF=X'13',TSPROF=X'07', *
 PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', *
 RUSIZES=X'8585',ENCR=B'0000', *
 PSERVIC=X'060200000000000000000300'
**
 TITLE 'APPCPCLM'
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR PC TARGET *
* IN THIS EXAMPLE THE DEFAULT RU SIZE FOR OS/2 (1024) IS USED *
**
APPCPCLM MODEENT LOGMODE=APPCPCLM, *
 RUSIZES=X'8787', *
 SRCVPAC=X'00', *
 SSNDPAC=X'01'
**
 TITLE 'APPCHOST'
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR HOST TARGET *
* IN THIS EXAMPLE RU SIZE OF 4096 IS USED *
**
APPCHOST MODEENT LOGMODE=APPCHOST, *
 RUSIZES=X'8989', *
 SRCVPAC=X'00', *
 SSNDPAC=X'01'
 MODEEND
 END

Figure 15: Logon Mode Table

The name of the logon mode table defined in the VTAM APPL definition must match the name defined in
VTAMLIB. In Figure 15 on page 37, for example, the name of the logon mode table defined to VTAMLIB is
LOGMODES.

For more information about defining the APPC/MVS logon mode, see z/OS MVS Planning: APPC/MVS
Management.

Defining LU and Logon Mode on Partner Systems
For DFM to conduct a network conversation with a DDM source implementation, each system in the
conversation must know its partner's LU name and logon mode information. Establishing partner
information involves the following steps:

1. You need to define on the partner (source) system the local LU, logon mode entry, and partner LU (the
LU associated with DFM for z/OS). What conventions and utilities you use for defining this information
depends on what platform the partner system runs. On a DDM client system, for example, you use
Communications Manager for specifying network information.

Customizing z/OS for Distributed FileManager 37

The logon mode name on the partner system must match a logon mode table entry name defined to
VTAM and associated with the VTAM APPL definition. This association can be explicit in the APPL
MODETAB definition statement or implicit in the VTAM-supplied default logon mode table ISTINCLM.

When the partner system sends an APPC allocate call to initiate a conversation with DFM, it sends the
name of a logon mode definition that must match a logon mode entry name defined to VTAM. If the
partner system is a DDM client, you must use the QPCSUPP logon mode entry name.

2. On the target z/OS system, you need to identify to VTAM the name of the partner LU. This name must
match the local LU name that you have established on the partner system.

For information about defining partner information to VTAM, see VTAM Network Implementation Guide ,
SC31-6434; VTAM Resource Definition Samples , SC31-6414; and VTAM Resource Definition Samples ,
SC31-6414.

Defining Partner Information on a DDM client

The following is an example of defining a local LU and a VTAM logon mode table specification for a partner
a DDM client. This example can be found in system SAMPLIB member GDEPRTLU (for example,
SYS1.SAMPLIB(GDEPRTLU)) or see “GDEPRTLU” on page 54.

 OS2PRTNR LU LOCADDR=0,
 ISTATUS=ACTIVE,
 MODETAB=LOGMODES ◄─── VTAM Logon Mode Table name
 RESSCB=4

Distributed FileManager Customizing Tasks
Customizing DFM includes installing and tuning DFM startup parameters in system PARMLIB, activating
the DFM startup procedure in system PROCLIB, and verifying PPT entries for DFM.

Tuning Distributed FileManager Startup Parameters in System PARMLIB
You can tune the startup parameters for DFM to fit your installation's performance requirements. These
parameters are contained in PARMLIB member DFM00 (for example, SYS1.PARMLIB(DFM00)). If DFM00
needs to be installed in PARMLIB on your system, you can copy system SAMPLIB member DFM00 (for
example, SYS1.SAMPLIB(DFM00)). DFM00 can also be found in “DFM00” on page 51.

The parameters shown in Table 1 on page 38 fall into categories related to either performance tuning or
data set definition defaults.

Table 1: Tunable Parameters in DFM00

Parameter Description Default Range

CLOSE_CHECK_INTV Time interval (in seconds) to wait between searches of
the Open PDSE queue for data sets to close

0 0—100

DEFER_CLOSE_TIME Time interval (in seconds) to wait before closing a PDSE
data set after a DDM close command has been
processed

0 0—100

LOCK_RETRY Number of lock conflict retries 3 1—100

LOCK_WAIT_INTV File lock wait interval in seconds 20 1—100

MAX_AGENT_TSKS Number of agents supported 5 1—100

MAX_CONV_LOCK Maximum locks on a file per agent 5 1—100

38 z/OS: DFSMS Distributed FileManager Guide and Reference

Table 1: Tunable Parameters in DFM00 (continued)

Parameter Description Default Range

SEND_BUFFER_THRESHOLD Maximum number of buffers between APPC SEND verb
completions

100 1—
1,000

LOGICAL_CACHE Cache limit for stream files 1,024 1—
2,047

CCSID Coded character set identifier (CCSID) for DFM 0 0—
65,535

PRIMARY Data set space allocation in records (non-SMS only) 100 1—2GB

SECONDARY Data set space allocation in records when PRIMARY
space is exhausted (non-SMS only)

50 0—2GB

STREAM_LRECL Logical record length for stream files 8,196 0—
32,760

UNIT Device type where non-SMS data sets are created, see
VOLUME

SYSALLDA N/A

VOLUME DASD volume serial number for non-SMS data set
creation

None N/A

RESTRICT_START Startup command in the PARMLIB DFM00 member Yes Yes or
No

Parameters Related to Performance
CLOSE_CHECK_INTV and DEFER_CLOSE_TIME

These parameters offer a trade-off between concurrency and PDSE processing performance. If typical
usage on your system tends to reaccess the same or other members of a PDSE, these parameters can
be specified as nonzero values to leave PDSEs open longer. Then, when PDSE members are
reaccessed, the overhead of closing and reopening data sets is eliminated. The trade-off is that the
data sets might be unavailable to other remote or local users longer than necessary.

MAX_AGENT_TSKS
This parameter can be used as a control on DFM resources. It determines the maximum number of
concurrent remote user tasks that the target server will allow.

MAX_CONV_LOCK
This parameter establishes a limit on how many locks each agent can have. If you think of a lock as
representing a system resource (in this case, a data set), then setting a maximum value for the
number of locks that can be held establishes a limit on how much serially reusable resource a given
agent can use at one time.

LOCK_RETRY and LOCK_WAIT_INTV
These parameters control how soon lock contentions are detected. In an interactive environment
where you can choose how to handle “try again later” messages, you might want short wait intervals
and few lock conflict retries. However, in a more batch-oriented environment, you might want the
opposite to avoid terminating batch jobs just because a lock is temporarily unavailable.

SEND_BUFFER_THRESHOLD
For this parameter, the maximum number of buffers between APPC SEND verb completions should be
fairly large to avoid irregularities in system response and to maximize concurrency. Specifying too
large a value, however, could result in excess paging.

In some cases, this parameter can increase the overall auxiliary storage requirements of the system.
As a general rule, you can determine the auxiliary storage increase by adding up the estimates for the
following:

• The total size of the stream-oriented files that are likely to be accessed concurrently by a typical
address space

Customizing z/OS for Distributed FileManager 39

• The space required for input buffers (up to the combined file size)
• The storage required for output buffers (SEND_BUFFER_THRESHOLD times 32k)

Take the resulting sum and multiply it by the number of concurrently running address spaces, then
add 25% to allow for control block overhead and unused space at the end of some of the buffers.

LOGICAL_CACHE
This parameter allows you to limit the amount of virtual storage a DFM conversation can use for
caching stream files. When the limit is reached, the current stream request is terminated. You can use
this parameter to minimize the potential impact of DFM for z/OS on z/OS system performance.

Parameters Related to Data Set Definition
CCSID

Use this parameter to establish the default value for the CCSID associated with data sets that will be
created by DFM. This CCSID, unless overridden by the workstation, defines the code page in which
stream files are stored when the workstation requests data conversion by specifying the TEXT option.
In most cases, the value should be left as zero. Zero is a special value that causes the default CCSID
to be inherited from a higher level in the hierarchy. Currently the only value that can be inherited is
500, EBCDIC International Latin-1. The inheritance occurs from DFM itself rather than from the
operating system.

If the CCSID is not supported by Character Data Representation Architecture (CDRA), startup will end
with message GDE006E indicating that the CCSID keyword has an incorrect value. The return code
shown will be that defined for CDRA's CDRGCTL function. If LE is not installed, message GDE006E will
be issued for an invalid CCSID with a return code of X'FFFFFFFF'. DFM startup will indicate it is not
started, but is actually started in a partial non-data conversion mode.

PRIMARY
This parameter defines the amount of space requested by a user for a data set when it is created. This
parameter applied only to the creation of non-SMS data sets. The default primary space allocation is
100 records.

SECONDARY
This parameter defines the amount of additional space requested by the user for a data set when
primary space is full. This parameter applied only to the creation of non-SMS data sets. The default
secondary space allocation is 50 records.

STREAM_LRECL
This parameter provides a default value for block size if the logical record length is not provided by the
SMS DATACLASS. If ACS routines or data classes are established so that all logical record length
specifications are provided through SMS data classes, this parameter can be specified as 0. Larger
values than 8196 can give better performance, but generally the most important consideration is
whether the data will be shared with z/OS applications.

If the data is shared, the needs of the z/OS applications should determine the logical record length.
For example, choosing a small value might allow easy editing or browsing of the file on z/OS. If,
however, the data will not be shared with z/OS applications, the larger the logical record length the
better the performance will tend to be.

UNIT
This parameter defines the device type where non-SMS data sets are created, see VOLUME.

VOLUME
This parameter defines the DASD serial number for non-SMS data set creation.

When DFM is installed, the VOLUME parameter must be activated if the installation does not use SMS
or chooses not to establish ACS routines for the DFM.

If SMS is not active and VOLUME is omitted, it is possible to create SAM data sets, but PDS data sets
created will not have directory blocks assigned to them and a "file damaged" error will occur.

40 z/OS: DFSMS Distributed FileManager Guide and Reference

Parameters Related to DataAgent
RESTRICT_START

This parameter is the startup command in the PARMLIB DFM00 member. The default is YES.

Activating Distributed FileManager in System PROCLIB
Activating DFM involves adding a startup procedure to a new system PROCLIB member called DFM, for
example, SYS1.PROCLIB(DFM). Once DFM is added to PROCLIB, DFM can be started by a system operator
command. The operator command, which can be part of initial program load, identifies the DFM member
(see “Starting Up Distributed FileManager” on page 45).

APPC/MVS and the APPC/MVS transaction scheduler (both are started by operator command) must be
active before DFM LU 6.2 conversations can take place on z/OS.

Figure 16 on page 41 is an example of the contents of the DFM member.

//DFM PROC PARMS='NORMAL'
//***
//* *
//* DFM START UP PROCEDURE *
//* *
//***
//DFM EXEC PGM=GDEISBOT,
// PARM='&PARMS',
// REGION=0K,
// TIME=1440
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOESN'T HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*
//* THE TWO FILES ASSOCIATED WITH THE DD STATEMENTS CDRATRC AND
//* SYSOUT CAN BE USED TO DIAGNOSE DFM STARTUP PROBLEMS RELATED
//* TO CDRA. (CDRA IS INVOKED DURING STARTUP FOR CERTAIN CCSID
//* VALUES IN THE SYS1.PARMLIB MEMBER DFM00.)
//*
//* YOU MUST ALLOCATE THE TWO FILES AS RECFM=FBA, LRECL=133,
//* AND DSORG=PS BEFORE STARTING DFM WITH THE DD STATEMENTS
//* ACTIVE.
//*
//* NOTE THAT SYSOUT IS REQUIRED AND CDRATRC IS OPTIONAL
//* WHEN USING CDRA AND THE DEFAULT INSTALLATION IS SET UP TO
//* USE CDRA IF YOUR HOST CODE PAGE IS OTHER THAN 500.
//*
//* CDRATRC DD DSN=SYS1.CDRATRC,DISP=SHR CDRA API TRACING
//* SYSOUT DD DSN=SYS1.CDRAOUT,DISP=SHR C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- DEFAULT = CDRA WITH RUNTIME MESSAGES DISCARDED

Figure 16: DFM Member Example

Note: LE is required to use CDRA, if LE is installed and is not in the link list, SYS1.PROCLIB(DFM) and
SYS1.SAMPLIB(GDETPDEF) should be modified so their STEPLIB DD statements refer to the proper LE run
time library. Refer to DFMREADM in SYS1.SAMPLIB for details.

Verifying PPT Entries for Distributed FileManager
To execute correctly, DFM must have entries in the system program property table (PPT). These entries
are automatically included in the base PPT for your installation (system LINKLIB member IEFSDPPT). If
the need arises to override this base PPT, you can add the entries to system PARMLIB member SCHEDxx
(for example, SYS1.PARMLIB(SCHEDxx)). For a sample of the entries, see Appendix I, “PPT Entries for
Distributed FileManager,” on page 93. PARMLIB(SCHEDxx) members for these sample entries should not
be created without prior discussion with your IBM service representative.

Customizing z/OS for Distributed FileManager 41

ACS Routines for Defining Distributed FileManager SMS Classes
ACS routines determine the SMS classes for data sets. For data sets to be classified as SMS-managed,
they must be defined in a storage class. DFM only permits remote creation of data sets when the resultant
data set is SMS-managed. If a request to create a data set would result in a non-SMS-managed data set,
DFM rejects the request.

DFM does not support the use of large format data sets, which are physical sequential data sets with the
ability to grow beyond the previous size limit of 65 535 tracks per volume. To prevent attempts to create a
large format data set, it is recommended that provide a storage class ACS routine to fail any DFM request
to create an unsupported type, such as &DSNTYPE = EXR, EXC, or LARGE.

For more information about large format data sets, see SC26-7410z/OS DFSMS Using Data Sets.

Figure 17 on page 42, Figure 18 on page 42, and Figure 19 on page 43 are sample ACS routines for
defining data, management, and storage classes for data sets created by DFM.

/* DATACLAS ROUTINE */
/* DEFAULT DATACLASSES FOR DFM */
/* */
IF &JOB = 'GDEDFM' AND &DATACLAS = '' THEN
 DO
 SELECT
 WHEN (&RECORG = 'KS') SET &DATACLAS = 'KS000000'
 WHEN (&RECORG = 'ES') SET &DATACLAS = 'ES000000'
 WHEN (&RECORG = 'RR') SET &DATACLAS = 'RR000000'
 WHEN (&DSORG = 'PS') SET &DATACLAS = 'PS000000'
 WHEN (&DSNTYPE = 'LIBRARY') SET &DATACLAS = 'LIB00000'
 OTHERWISE WRITE 'NOT A SUPPORTED DFM DATASET TYPE'
 END /* SELECT */
 /* DEBUGGING STATEMENT FOLLOWS. REMOVE IT WHEN ROUTINE IS OK. */
 IF &DATACLAS ^= '' THEN
 WRITE 'DATACLAS SET TO '&DATACLAS' FOR DFM'
 EXIT CODE(0)
 END /* DO */

Figure 17: Data Class Routine

If the logical record length for stream files is specified as zero (STREAM_LRECL(0)) in the system
PARMLIB member DFM00, you must select a data class providing a nonzero record length.

 /* MGMTCLAS ROUTINE */
 /* IF JOB IS DFM */
 /* SET MGMTCLAS TO DFMMGMT. */
 /* */
 IF &JOB = 'GDEDFM' THEN
 DO
 SET &MGMTCLAS = 'DFMMGMT'
 /* DEBUGGING STATEMENT FOLLOWS. REMOVE IT WHEN ROUTINE IS OK. */
 WRITE '&MGMTCLAS SET TO '&MGMTCLAS' FOR DFM'
 EXIT CODE(0)
 END /* GDEDFM */
 /* */

Figure 18: Management Class Routine

42 z/OS: DFSMS Distributed FileManager Guide and Reference

 /* STORCLAS ROUTINE */
 /* DEFAULT STORCLAS FOR DFM IS DFMCLASS. */
 /* */
 /* */
 IF &JOB = 'GDEDFM' AND &STORCLAS = '' THEN
 DO
 SET &STORCLAS = 'DFMCLASS'
 /* DEBUGGING STATEMENT FOLLOWS. REMOVE IT WHEN ROUTINE IS OK. */
 WRITE 'STORCLAS SET TO '&STORCLAS' FOR DFM'
 EXIT CODE(0)
 END
 /* */
 /* */

Figure 19: Storage Class Routine

Data sets without a storage class cannot be SMS-managed.

Establishing Distributed FileManager TP Access Security
You need to establish access security for the DFM TP so that only authorized users and applications can
remotely access it. To protect the DFM TP, you can:

• Limit which LUs can enter your z/OS system
• Ensure that inbound requests to initiate conversations with the DFM TP contain security information

such as user IDs and passwords
• Limit by user ID or group who can access the DFM TP
• Limit the administrators who can define and update information in the DFM TP profile

Using RACF to Control Access to the Distributed FileManager TP
You can use RACF (or an equivalent product) to control which user IDs or groups of user IDs are
authorized to access DFM. To accomplish this, you need the following information:

• Name of your DFM TP profile
• User IDs that will be authorized EXECUTE access to your APPC/MVS TP
• User IDs that will be authorized as APPC/MVS administrators to read and update DFM TP profile

information

The RACF APPCTP resource class controls the use of the APPC/MVS TP. Profiles in this resource class
define which user IDs can execute the APPC/MVS TP. The names of these profiles are in the form
dbtoken.level.tpname, where
dbtoken

The database token associated with the DFM TP profile (1 to 8 characters). The TP profile must have a
database token, or else APPC/MVS cannot call RACF for TP access security. For more information
about adding a database token, see z/OS MVS Planning: APPC/MVS Management.

level
This is one of the following:

• The name of your system library (for example, SYS1), if the TP is available to all users who can
access the LU

• A group ID, if the TP is available to a group
• A user ID, if the TP is available to just a specific user

Customizing z/OS for Distributed FileManager 43

tpname
The name of the DFM TP profile, which is always ^X'07'001 (see “Adding the TP Profile to the VSAM
KSDS” on page 33)

Defining the Distributed FileManager TP Profile to RACF
The following example defines to RACF the DFM TP profile name (^X'07'001) in the RACF APPCTP class:

 RDEFINE APPCTP TOKEN1.SYSTEM.^X'07'001 UACC(NONE)

Defining a TP Administrator to RACF
The following example defines to RACF the user ID ADMIN01 with update access to the DFM TP profile:

 PERMIT TOKEN1.SYSTEM.^X'07'001 CLASS (APPCTP) ID (ADMIN01) ACCESS(UPDATE)

Defining a User ID to RACF
The following example defines to RACF the user ID DFMUSER with authorization to execute the DFM TP:

 PERMIT TOKEN1.SYSTEM.^X'07'001 CLASS (APPCTP) ID (DFMUSER) ACCESS(EXECUTE)

Implementing RACF Access Protection for TP
To implement RACF protection as defined in the APPCTP profile, you must activate in RACF the APPCTP
class and SETROPTS RACLIST for the class. For example:

 SECTROPTS CLASSACT(APPCTP) RACLIST(APPCTP)

For more detailed information about using RACF to control DFM TP access, see z/OS MVS Planning:
APPC/MVS Management.

44 z/OS: DFSMS Distributed FileManager Guide and Reference

Chapter 4. Operating Distributed FileManager

This chapter is about operating Distributed FileManager (DFM) on a z/OS system. It covers procedures for
starting up the DFM environment on z/OS and for monitoring and controlling the status of DFM
conversations.

For more information, see z/OS MVS Planning: APPC/MVS Management.

Starting the Distributed FileManager Environment
Starting the DFM environment requires that computer operations run procedures to start APPC/MVS, the
APPC/MVS transaction scheduler, and DFM.

APPC/MVS and the transaction scheduler must be started before starting DFM. To automate these
procedures at initial program load (IPL), you can add the startup commands to the system PARMLIB
member COMMNDxx (for example, SYS1.PARMLIB(COMMNDxx)).

Starting APPC/MVS
The startup parameters for APPC/MVS are in system PARMLIB member APPCPMxx. These parameters
define the local LU to be used for APPC/MVS. They associate the LU with an APPC/MVS transaction
scheduler and the DFM TP profile. See “Defining PARMLIB Start Parameters for APPC/MVS” on page 32
for more details.

The following command starts up APPC/MVS:

 START APPC,SUB=MSTR,APPC=xx
 where xx is the unique APPCPMxx suffix

Starting the APPC/MVS Transaction Scheduler
The APPC/MVS transaction scheduler initiates and schedules TPs in response to inbound allocate
requests. The system PARMLIB member ASCHPMxx controls the transaction scheduler for the DFM TP.
For more information about creating ASCHPMxx, see “Defining PARMLIB Start Parameters for the
APPC/MVS Scheduler” on page 34.

The following command starts up the APPC/MVS transaction scheduler:

 START ASCH,SUB=MSTR,ASCH=xx
 where xx is the unique ASCHPMxx suffix

Starting Up Distributed FileManager
System PROCLIB member DFM contains the procedure for starting up &mvsdfmtemp (see “Activating
Distributed FileManager in System PROCLIB” on page 41). DFM must be active prior to APPC/MVS
initiating a conversation.

The following command starts DFM:

 START DFM,SUB=MSTR

Triggering the Distributed FileManager DataAgent
A DFM for z/OS DataAgent can only be triggered from an SdU application or a DDM application that is
written to call the DataAgent from a client workstation. IBM provides sample DataAgent routines,
DFMXAGNT, DFMQTSO, DFMXSORT, and DFMXTSO that you can execute. You can also use these routines
as examples to help write your own DataAgent routines. Your SdU application or DDM application uses the

© Copyright IBM Corp. 1993, 2017 45

DDMOpen function to trigger the DataAgent processing on z/OS and it uses the DDMClose function to
terminate the DataAgent processing.

Monitoring Status of Distributed FileManager Conversations
APPC/MVS provides the DISPLAY command for monitoring the status of APPC/MVS conversations. The
DISPLAY APPC command gives status information about TPs and LUs. The DISPLAY ASCH command gives
status information about APPC/MVS transaction schedulers. “Using the DISPLAY APPC Command” on
page 46 provides examples of using these commands.

Using the DISPLAY APPC Command
These are examples of using the DISPLAY APPC command.

Displaying TP Status Information

These examples use the DISPLAY APPC command to return selected TP status information about the
following:

• DFM TP:

 DISPLAY APPC,TP,LIST,LTPN=^X'07'001

• TPs scheduled by ASCH:

 DISPLAY APPC,LIST,SCHED=ASCH

• DFM TP in a particular address space:

 DISPLAY APPC,LIST,ASID=asid
 where asid is the hexadecimal address space identifier

• TPs activated by a specific user ID:

 DISPLAY APPC,LIST,USERID=userid

Displaying LU Status Information

These examples use the DISPLAY APPC command to return selected LU status information about the
following:

• A local LU:

 DISPLAY APPC,LU,LIST,LLUN=lluname
 where lluname is the name of a local LU

• All LUs (includes detailed information about local and partner LUs):

 DISPLAY APPC,LU,ALL

Using the DISPLAY ASCH Command
These examples use the DISPLAY ASCH command to return selected status information about ASCH:

• Summary of ASCH transaction scheduling information (includes summary of all APPC/MVS transaction
scheduling activity):

 DISPLAY ASCH,SUMMARY

• DFM TP scheduling information:

 DISPLAY ASCH,LIST,ASID=001E
 where 001E is the hexadecimal address space identifier for
 the Distributed FileManager TP

46 z/OS: DFSMS Distributed FileManager Guide and Reference

• TPs scheduled by a specific user ID:

 DISPLAY ASCH,LIST,USERID=userid

Controlling Status of Distributed FileManager Conversations
This discussion covers the following ways for controlling the status of DFM conversations:

• Deactivating the DFM TP
• Stopping a local LU with the SET command
• Stopping DFM with the CANCEL command
• Using the FORCE command

Deactivating the Distributed FileManager TP
You can deactivate the DFM TP by modifying its TP profile. Using the TPMODIFY command in the
APPC/MVS administration utility (ATBSDFMU), you can stop the DFM TP from being scheduled and stop
new requests for the TP.

The TPMODIFY command lets you change the active status of the DFM TP to NO in the TP profile data set.
If the DFM TP is running at the time, then the current and any queued requests are allowed to complete.
No new requests, however, are allowed.

This is an example of using the TPMODIFY command to deactivate the DFM TP:

 TPMODIFY
 TPNAME(^X'07'001)
 SYSTEM
 ACTIVE(NO)

For more information, see z/OS MVS Planning: APPC/MVS Management.

Stopping a Local LU with the MVS SET Command
You can stop work from coming into a local LU by using the MVS™ SET command to delete an LU from the
APPC/MVS configuration. Use this method to:

• Stop an LU that is not functioning properly (for example, because of a VTAM error)
• Stop TPs defined in a TP profile data set that uses one or more LUs
• Stop a TP scheduler

To stop an LU by using the SET command:

1. Code system PARMLIB member APPCPMxx with the command to delete the LU. For example, to delete
an LU named MYLU, code PARMLIB member APPCPM1D as follows:

 LUDEL
 ACBNAME(MYLU)

2. After coding APPCPM1D, issue this command to stop the LU:

 SET APPC=1D

For more information about deleting LUs, see z/OS MVS Planning: APPC/MVS Management.

Stopping DFM for z/OS with the MVS CANCEL Command
You can use the MVS CANCEL command to immediately stop the DFM TP in a particular address space. It
can also be used to immediately stop the DFM startup procedures APPC/MVS, ASCH, and DFM. If the
CANCEL command is not successful, try the FORCE command (see “Using the FORCE Command” on page
48).

Operating Distributed FileManager 47

Stopping the Distributed FileManager TP

This example stops both the DFM TP and any associated APPC/MVS conversation:

1. First use this command to find out the jobname and address space identifier (ASID) for your DFM TP:

 DISPLAY ASCH,ALL,LTPN=^X'07'001
 where ^X'07'001 is the Distributed FileManager TP profile name

2. Suppose that the jobname is GDEDFM and the ASID is 0044. Use this information as shown to
immediately stop the DFM TP:

 CANCEL GDEDFM,A=0044

Stopping APPC/MVS, ASCH, and DFM

The following examples stop APPC/MVS, ASCH, and DFM:

 CANCEL APPC
 CANCEL ASCH
 CANCEL DFM

You should consider the following before using the CANCEL command:

• Before cancelling DFM, first cancel all jobs servicing APPC/MVS conversations, for example JOBNAME
GDEDFM. Otherwise, the jobs abend when they try to access DFM resources.

• Each time DFM is cancelled, the system marks the address space in which it was running as
nonreusable until the next IPL.

• Cancelling APPC, ASCH, or DFM immediately ends all TPs and scheduling activity for APPC/MVS, which
could have serious repercussions.

Note: 13E abends can occur during CANCEL command processing. These abends are perfectly normal
and do not interfere with the CANCEL command processing.

Using the FORCE Command

If the CANCEL command is not successful, you can try the MVS FORCE command to stop the DFM TP.
Using the FORCE command can, however, result in loss of resources until the system is re-IPLed.

In this example, the FORCE command is used to stop a DFM TP with jobname GDEDFM and an ASID of
0044:

 FORCE GDEDFM,A=0044

48 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix A. System Samples

This appendix documents:

• The system SAMPLIB and PROCLIB samples related to customizing z/OS for the Distributed
FileManager environment

• A sample of the PPT entries for Distributed FileManager
• The DFM DataAgent DFMACALL.C sample

System SAMPLIB Samples
The following are system SAMPLIB samples that are referred to in Chapter 3, “Customizing z/OS for
Distributed FileManager,” on page 29.

GDEAPPC
System SAMPLIB member GDEAPPC, for example, SYS1.SAMPLIB(GDEAPPC), contains the sample shown
in Figure 20 on page 49 of the APPC/MVS start parameters.

/* START OF SPECIFICATIONS ***/
/* */
/*01* MEMBER-NAME: GDEAPPC */
/* */
/*02* DESCRIPTIVE-NAME: DFSMS DISTRIBUTED FILEMANAGER SAMPLE TO */
/* DEFINE A LOCAL LU TO APPC/MVS */
/* */
/*01* DISCLAIMER = */
/* */
/* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A */
/* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR */
/* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM */
/* TESTING. THIS SOURCE IS DISTRIBUTED ON AN 'AS IS' BASIS */
/* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. */
/* */
/* */
/*01* FUNCTION: */
/* THIS SAMPLE MEMBER DEFINES AN LU TO APPC, ALONG WITH A VSAM */
/* DATASET FOR TP PROFILES AND A SECOND ONE FOR SIDE INFORMATION */
/* */
/* */
/*01* DISTRIBUTION LIBRARY: ASAMPLIB */
/* */
/*01* CHANGE-ACTIVITY: */
/* */
/* FLAG LINEITEM FMID DATE ID COMMENT */
/* $L0=GDEAPPC HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER */
/* SAMPLE TO ADD A LOCAL LU TO APPC/MVS */
/* */
/* */
/***/
LUADD ACBNAME(MVSLU01) BASE TPDATA(SYS1.APPCTP)
SIDEINFO DATASET(SYS1.APPCSI)

Figure 20: APPC/MVS Start Parameters

GDEAPDEF
System SAMPLIB member GDEAPDEF, for example, SYS1.SAMPLIB(GDEAPDEF), contains the sample
shown in Figure 21 on page 50 of a VTAM APPL definition in VTAMLST.

© Copyright IBM Corp. 1993, 2017 49

/ START OF SPECIFICATIONS ***
* *
01 MEMBER-NAME: GDEAPDEF *
* *
02 DESCRIPTIVE-NAME: SAMPLE VTAM APPL STATEMENT FOR APPC/MVS *
* NECESSARY TO RUN DFSMS DISTRIBUTED FILEMANAGER *
* *
* 01* DISCLAIMER = *
* *
* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A *
* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR *
* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM *
* TESTING. THIS SOURCE IS DISTRIBUTED ON AN 'AS IS' BASIS *
* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. *
* *
* *
01 FUNCTION: THIS APPL STATEMENT IDENTIFIES APPC/MVS AS A VTAM *
* APPLICATION, WITH ONE ACB DEFINED FOR LU MVSLU01. *
* *
* *
01 DISTRIBUTION LIBRARY: ASAMPLIB *
* *
01 CHANGE-ACTIVITY: *
* *
* FLAG LINEITEM FMID DATE ID COMMENT *
* $L0=GDEAPDEF HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER *
* SAMPLE VTAM APPL DEFINITION *
* *

MVSLU01 APPL ACBNAME=MVSLU01, C
 APPC=YES, C
 AUTOSES=0, C
 DDRAINL=NALLOW, C
 DMINWNL=5, C
 DMINWNR=5, C
 DRESPL=NALLOW, C
 DSESLIM=10, C
 LMDENT=19, C
 MODETAB=LOGMODES, C
 PARSESS=YES, C
 SECACPT=CONV, C
 SRBEXIT=YES, C
 VPACING=1

Figure 21: VTAM APPL Definition in VTAMLST

GDEASCH
System SAMPLIB member GDEASCH, for example, SYS1.SAMPLIB(GDEASCH), contains the sample
shown in Figure 22 on page 51 of start parameters for the APPC/MVS scheduler (ASCH).

50 z/OS: DFSMS Distributed FileManager Guide and Reference

/** START OF SPECIFICATIONS **/
/* */
/*01*MEMBER-NAME: GDEASCH */
/* */
/*02* DESCRIPTIVE-NAME: SAMPLE ASCH START PARAMETER STATEMENTS */
/* NECESSARY TO RUN DFSMS DISTRIBUTED FILEMANAGER*/
/* */
/*01* DISCLAIMER = */
/* */
/* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A */
/* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR */
/* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM */
/* TESTING. THIS SOURCE IS DISTRIBUTED ON AN 'AS IS' BASIS */
/* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. */
/* */
/*01* FUNCTION: */
/* THIS PARMLIB MEMBER SETS UP A SCHEDULER CLASS. */
/* */
/*01* DISTRIBUTION LIBRARY: ASAMPLIB */
/* */
/*01* CHANGE-ACTIVITY: */
/* */
/*FLAG LINEITEM FMID DATE ID COMMENT */
/* $L0=GDEASCH HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER */
/* SAMPLE ASCH START PARAMETERS */
/* */
/***/
CLASSADD CLASSNAME(A)
 MSGLIMIT(1000) MAX(10) MIN(1) RESPGOAL(1)

Figure 22: ASCH Start Parameter Statements to Run DFM

DFM00
System SAMPLIB member DFM00, for example, SYS1.SAMPLIB(DFM00), contains the sample shown in
Figure 23 on page 51 of the startup parameters for Distributed FileManager.

 DFM CCSID(0)
 CLOSE_CHECK_INTV(0)
 DEFER_CLOSE_TIME(0)
 LOCK_RETRY(3)
 LOCK_WAIT_INTV(20)
 LOGICAL_CACHE(1024)
 MAX_AGENT_TSKS(5)
 MAX_CONV_LOCK(5)
 RESTRICT_START(YES)
 STREAM_LRECL(8196)
 SEND_BUFFER_THRESHOLD(100)
 /* Uncomment the next lines to provide allocation defaults if */
 /* non-SMS files are to be created by DFM. Remove or comment them */
 /* out again once SMS allocation is in use. */
 /* PRIMARY(100) SECONDARY(50) */
 /* UNIT(SYSALLDA) */
 /* VOLUME(xxxxxx) */

Figure 23: Startup Parameters for Distributed FileManager

GDELOGMD
System SAMPLIB member GDELOGMD, for example, SYS1.SAMPLIB(GDELOGMD), contains the sample
shown in Figure 24 on page 52 of a VTAM logon mode table that contains the logon mode entry for
Distributed FileManager.

System Samples 51

*** START OF SPECIFICATIONS **
* *
01 MEMBER-NAME: GDELOGMD *
* *
02 DESCRIPTIVE-NAME: SAMPLE VTAM LOGMODE TABLE *
* *
* *
* 01* DISCLAIMER = *
* *
* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A *
* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR *
* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM *
* TESTING. THIS SOURCE IS DISTRIBUTED ON AN 'AS IS' BASIS *
* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. *
* *
01 FUNCTION: *
* THIS TABLE IS AN EXAMPLE OF A VTAM LOGMODE TABLE NECESSARY *
* TO BE INSTALLED ON MVS HOST TO RUN DFSMS DISTRIBUTED *
* FILEMANAGER. *
* *
01 DISTRIBUTION LIBRARY: ASAMPLIB *
* *
01 CHANGE-ACTIVITY: *
* *
* FLAG LINEITEM FMID DATE ID COMMENT *
* $L0=GDELOGMD HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER *
* SAMPLE VTAM LOGON MODE TABLE. *
* *
**
* *
LOGMODES MODETAB
 EJECT
**
 TITLE 'SNASVCMG'
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
SNASVCMG MODEENT LOGMODE=SNASVCMG,FMPROF=X'13',TSPROF=X'07', *
 PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', *
 RUSIZES=X'8585',ENCR=B'0000', *
 PSERVIC=X'060200000000000000000300'
**

Figure 24: VTAM Logon Mode Table Part 1 of 2

52 z/OS: DFSMS Distributed FileManager Guide and Reference

 TITLE 'QPCSUPP'
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* REQUIRED FOR LU MANAGEMENT *
**
QPCSUPP MODEENT LOGMODE=QPCSUPP,FMPROF=X'13',TSPROF=X'07', *
 PRIPROT=X'B0',SECPROT=X'B0',COMPROT=X'D0B1', *
 RUSIZES=X'8585',ENCR=B'0000', *
 PSERVIC=X'060200000000000000000300'
**
 TITLE 'APPCPCLM'
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR PC TARGET *
* IN THIS EXAMPLE THE DEFAULT RU SIZE FOR OS/2 (1024) IS USED *
**
APPCPCLM MODEENT LOGMODE=APPCPCLM, *
 RUSIZES=X'8787', *
 SRCVPAC=X'00', *
 SSNDPAC=X'01'
**
 TITLE 'APPCHOST'
**
* LOGMODE TABLE ENTRY FOR RESOURCES CAPABLE OF ACTING *
* AS LU 6.2 DEVICES *
* FOR HOST TARGET *
* IN THIS EXAMPLE RU SIZE OF 4096 IS USED *
**
APPCHOST MODEENT LOGMODE=APPCHOST, *
 RUSIZES=X'8989', *
 SRCVPAC=X'00', *
 SSNDPAC=X'01'
 MODEEND
 END

Figure 25: VTAM Logon Mode Table Part 2 of 2

GDETPDEF
System SAMPLIB member GDETPDEF, for example, SYS1.SAMPLIB(GDETPDEF), contains the sample
shown in Figure 26 on page 54 of adding the Distributed FileManager TP profile to the APPC/MVS TP
profile data set.

Note: The GDEDFM job in GDETPDEF should have either no region size or a region size of 0K to contain
cached stream files. LE is required to use CDRA, if LE is installed and is not in the link list,
SYS1.PROCLIB(DFM) and SYS1.SAMPLIB(GDETPDEF) should be modified so their STEPLIB DD
statements refer to the proper LE run time library. Refer to DFMREADM in SYS1.SAMPLIB for details.
SYSOUT and CDRATRC files can be allocated as RECFM=FBA, LRECL=133, and DSORG=PS for use in
diagnosing CDRA problems.

System Samples 53

//**
//* PROPRIETARY V2 STATEMENT
//* LICENSED MATERIALS - PROPERTY OF IBM
//* 5695-DF1 (C) COPYRIGHT 1994,1995 IBM CORP.
//* END PROPRIETARY V2 STATEMENT
//*
//**
//IBMUSER1 JOB 'GDETPDEF',NOTIFY=IBMUSER,MSGCLASS=H
//**
//*
//* GDETPDEF - MVS/APPC setup for DFM: TP definition utility
//*
//* This job invokes the APPC/MVS administration utility to add
//* the TP profile to the APPC/MVS data set.
//*
//* It consists of a single job step that adds a MVS/DFM TP
//* to SYS1.APPCTP.
//*
//* Modify the above job statement as required and,
//* optionally, make the following modifications
//* to the job itself:
//*
//* change 'SYS1.APPCTP' to another name if required by
//* your installation
//* change the DFMJOB card to one suitable for your installation
//* Note that you can alter the DD statements CDRATRC and SYSOUT
//* as needed to obtain CDRA API trace output and C runtime messages.
//**

Figure 26: MVS/APPC Setup for DFM: TP Definition Utility Part 1 of 2

//STEP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSIN DD DATA,DLM=XX
 TPDELETE
 TPNAME(^X'07'001)
 TPADD
 TPNAME(^X'07'001)
 ACTIVE(YES)
 TPSCHED_DELIMITER(##)
 CLASS(A)
 JCL_DELIMITER(ENDJCL)
//GDEDFM JOB MSGCLASS=H,MSGLEVEL=(1,1),CLASS=A
//GDEDFM EXEC PGM=GDEISASB
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOES NOT HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//*CDRATRC DD DSN=SYS1.CDRATRC2,DISP=SHR <- CDRA API TRACE OUTPUT
//*SYSOUT DD DSN=SYS1.CDRAOUT2,DISP=SHR <- C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- C RUNTIME MESSAGES (NO-OP)
ENDJCL
##
XX

Figure 27: MVS/APPC Setup for DFM: TP Definition Utility Part 2 of 2

GDEPRTLU
System SAMPLIB member GDEPRTLU, for example, SYS1.SAMPLIB(GDEPRTLU), contains the sample
shown in Figure 28 on page 55 of a partner definition for a DDM client system.

54 z/OS: DFSMS Distributed FileManager Guide and Reference

/ START OF SPECIFICATIONS ***
* *
01 MEMBER-NAME: GDEPRTLU *
* *
02 DESCRIPTIVE-NAME: SAMPLE VTAM PARTNER LU DEFINITION NECESSARY *
* TO RUN DFSMS DISTRIBUTED FILEMANAGER *
* *
* 01* DISCLAIMER = *
* *
* THIS SAMPLE SOURCE IS PROVIDED FOR TUTORIAL PURPOSES ONLY. A *
* COMPLETE HANDLING OF ERROR CONDITIONS HAS NOT BEEN SHOWN OR *
* ATTEMPTED, AND THIS SOURCE HAS NOT BEEN SUBMITTED TO FORMAL IBM *
* TESTING. THIS SOURCE IS DISTRIBUTED ON AN 'AS IS' BASIS *
* WITHOUT ANY WARRANTIES EITHER EXPRESSED OR IMPLIED. *
* *
01 FUNCTION: THIS LU STATEMENT IDENTIFIES THE PARTNER LU *
* *
01 DISTRIBUTION LIBRARY: ASAMPLIB *
* *
01 CHANGE-ACTIVITY: *
* *
* FLAG LINEITEM FMID DATE ID COMMENT *
* $L0=GDEPRTLU HDZ11B0 931009 DFSMS 1.2.0 DISTRIBUTED FILEMANAGER *
* SAMPLE PARTNER LU DEFINITION *
* *

OS2PRTNR LU LOCADDR=0, *
 ISTATUS=ACTIVE, *
 MODETAB=LOGMODES, *
 RESSCB=4

Figure 28: VTAM Partner LU Definition to Run DFSMS/DFM

System Samples 55

56 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix B. DFMX0001

System SAMPLIB member DFMX0001, for example, SYS1.SAMPLIB(DFMX0001), contains the sample
shown in Figure 29 on page 57, showing how to set up a procedure for starting the DFM DataAgent.

//DFMX0001 JOB ,MSGCLASS=Z
//DFMX0001 PROC DFMINIT= <,optional_procedural_parameters>
//DFMAGENT EXEC PGM=&DFMINIT <,optional_program_parameters>
//*
//* This procedure is a sample showing how to set up a procedure
//* for starting a DFM DataAgent.
//*
//* DFM DataAgent processing requires a procedure (whose name is
//* the same as the agent name). The procedure has to run DFMINIT
//* and DFMINIT will call a DataAgent routine. The DataAgent routine
//* will default to the same name as the agent (or procedure) name
//* but can be the name of any executable program suitable for
//* running as a key 8 job step.
//*
//* For example, you could run this DataAgent routine with no
//* further setup by issuing the following SdU sample command
//* from a workstation:
//* dfmacall agent x:filename dfmx0001 pgm iefbr14
//*
//* DFMINIT is DFM's DataAgent routing module and should not
//* be changed. Other DD statements and symbolic
//* substitutions can be added as needed by the DataAgent
//* program itself.
//*
//* This example is intended to discard the output by routing
//* it to MSGCLASS of Z. You should modify it as appropriate
//* for your installation. If you do not purge output, the
//* operator will have to periodically have to issue the $ps
//* command.
//*
//* Add additional DD statements as required by your program.
//*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DFMX0001 PEND
//GO EXEC DFMX0001

Figure 29: Starting the DFM DataAgent

© Copyright IBM Corp. 1993, 2017 57

58 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix C. DFMXAGNT

System SAMPLIB member DFMXAGNT, for example, SYS1.SAMPLIB(DFMXAGNT) shown in Figure 30 on
page 59, contains the DFM DataAgent sample routine.

/***
* PROPRIETARY V3 STATEMENT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* 5695-DF1 *
* (C) COPYRIGHT 1997 IBM CORP. *
* END PROPRIETARY V3 STATEMENT *
***/

/***
* *
* $MOD(DFMXAGNT) COMP(5695-DF120) *
* *
* MODULE NAME: DFMXAGNT *
* *
* DESCRIPTION: DFM DataAgent Sample Routine *
* *
* STATUS: Version 1 Release 4.0 (DFSMS) *
* *
* COPYRIGHT: See the copyright statement on the previous page.*
* *
* FUNCTION: This module illustrates how a DFM DataAgent can *
* be written in C. It gets control at file declaration time *
* and sets the reason code so that it will also get control *
* when the file declaration is deleted. Its sole function is *
* to issue printf statements displaying the parameters if its *
* internal debug flag is set. *
* *
* You can use the C compiler and your installation's linkedit *
* JCL to build the DFMXAGNT executable code on the mainframe. *
* *
* You can then copy DFMX0001 to produce a proclib *
* member (proclib member name is also referred to as the *
* DFM DataAgent name). You could then invoke the DataAgent *
* by means of the DFMACALL sample application provided by *
* SdU. (An analogous procedure is given by the installation *
* sample DFMXSRTI but in this case you might call the load *
* module DFMXAGNT and copy DMFX0001 to build PROCLIB(DFMXAGNT) *
* so that "dfmacall agent x:filename dfmxagent" could be used *
* to invoke it from the workstation.) *
* *
* An installation sample is not provided in order to *
* demonstrate that the manual process as outlined above is *
* straight-forward and because this sample would probably not *
* be used without significant changes anyway. *
* *

Figure 30: DFM DataAgent Sample Routine Part 1 of 5

© Copyright IBM Corp. 1993, 2017 59

* PROCESSING: *
* *
* LOGIC: *
* Refer to block comments in the code. *
* *
* ERROR PROCESSING: *
* Issue a printf and then return with register 15 set to a *
* non-zero value and with the reason code in the extended *
* parameter list set to a unique value. *
* *
* NOTES: *
* *
* PATCH SPACE: None *
* XAX CONSIDERATIONS: AMODE(31) RMODE(ANY) ENV(PRI) *
* DEPENDENCIES: The Language Environment and the C runtime *
* library must be installed. *
* RESTRICTIONS: None *
* REGISTER CONVENTIONS: Standard conventions--refer to C *
* compiler documentation. *
* SERIALIZATION: No serialization techniques are used by this *
* module. *
* *
* MODULE TYPE: Procedure *
* PROCESSOR: C *
* ATTRIBUTES: *
* TYPE: Reentrant *
* PRIMARY ASID: Caller's ASID *
* SECONDARY ASID: Same as primary *
* HOME ASID: Same as primary *
* MODE: Task *
* KEY: 8 *
* STATE: Problem program *
* LOCATION: Link library *
* *
* ENTRY POINT: main *
* *
* PURPOSE: Show that a DataAgent routine can be written in C. *
* LINKAGE: Called by Distributed FileManager. *
* INPUT/OUTPUT: Refer to the DFM Guide and Reference for the *
* parameter list format. *
* *
* MESSAGES: Refer to printf statements. *
* *
* EXIT NORMAL: *
* RETURN CODE: Register 15 = 0 *
* REASON CODE: Not applicable *
* MESSAGE ID: None: *

Figure 31: DFM DataAgent Sample Routine Part 2 of 5

60 z/OS: DFSMS Distributed FileManager Guide and Reference

* *
* EXIT ERRORS: *
* RETURN CODE: Register 15 = 8 *
* REASON CODE: Unique values set in the extended parameter *
* list *
* MESSAGE ID: See printf statements. *
* *
* EXTERNAL REFERENCES: None *
* *
* CHANGE ACTIVITY: *
* $L0=DFSMS14,HDZ11D0,960628,SJPLMMR: DFM DataAgent initial code *
***/
#pragma csect (static, "DFMXAGN")
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <ctype.h>
#include <string.h>

#pragma csect (code, "DFMXAGNT")

int main(argc, argv)
 int argc; /* count of input parameters */
 char **argv; /* input parameters */
{
 int i; /* loop counter */
 char dsname??(55??); /* data set name area */
 int debug = 1; /* debug flag */

 /**/
 /* Define additional parameter for DataAgent special processing */
 /**/
 _Packed struct extra_parms {
 short int extra_parms_len; /* length of extra parms */
 /**/
 /* Basic section of the extra parameter structure */
 /**/
 unsigned short int reserved; /* reserved field */
 unsigned short int command_cp; /* command code point */
 unsigned short int object_cp; /* object code point */
 unsigned short int ofn_len; /* original filename length */
 char ofn??(54??); /* original filename */
 unsigned short int cfn_len; /* current/modified filename len */
 char cfn??(54??); /* current/modified filename */
 signed long int reason_code1; /* main reason code */
 signed long int reason_code2; /* secondary reason code */

Figure 32: DFM DataAgent Sample Routine Part 3 of 5

DFMXAGNT 61

 /**/
 /* Any additions to the extra parameter structure in */
 /* future DFSMS releases would go here. */
 /**/
 } ep_area; /* extra parameters for DataAgent */
 /* Define extra parameter instance */
 struct extra_parms *p_extra;

 /**/
 /* Begin DataAgent routine processing. */
 /**/
 if (debug) {
 /**/
 /* Display input parameters for debugging purposes. */
 /**/
 printf ("DFMXAGNT: DataAgent routine entered.\n");
 if (argc > 0) {
 /**/
 /* Display standard parameters and the program name. */
 /**/
 printf(" \n");
 printf ("Parameters passed were the following:\n");
 {
 for (i = 1; i < argc; i++)
 printf (" %s\n",argv??(i??));
 }
 /**/
 /* DataAgent has access to an extra parameter list in addition*/
 /* to the standard format MVS parameter list. This parameter */
 /* list is defined by the structure agent_parms. */
 /**/
 /* Locate the extra parameters. */
 /**/

 DFMXLPRM("DFMXAGNT",&p_extra);
 if (p_extra == NULL) {
 /**/
 /* No parameters--something went wrong. */
 /**/
 printf ("DFMXAGNT: No DataAgent parameters!!\n");
 return 8; /* exit with error */
 }

Figure 33: DFM DataAgent Sample Routine Part 4 of 5

62 z/OS: DFSMS Distributed FileManager Guide and Reference

 if (p_extra->extra_parms_len >= sizeof(ep_area)) {
 /**/
 /* Print the basic section of the extra parameter list. */
 /**/
 printf (" \n");
 printf ("Extra DataAgent parameters were:\n");
 printf (" DDM command code point: %X\n",p_extra->command_cp);
 printf (" DDM object code point: %X\n",p_extra->object_cp);
 printf (" DDM current filename length: %d\n",
 p_extra->cfn_len);
 printf (" DDM current filename: %s\n",
 strncpy(dsname, p_extra->cfn, p_extra->cfn_len));
 printf (" DDM original filename length: %d\n",
 p_extra->ofn_len);
 printf (" DDM original filename: %s\n",
 strncpy(dsname, p_extra->ofn, p_extra->ofn_len));
 /**/
 /* Force recall of the exit (for DELDCL, etc.) */
 /**/
 p_extra->reason_code1 = -1;
 } /* End, basic section exists */
 } /* End, parameters exist */
 else {
 /**/
 /* No parameters--something went wrong. */
 /**/
 printf ("DFMXAGNT: No parameters?\n");
 p_extra->reason_code1 = 2; /* set reason code */
 return 8; /* exit with error */
 } /* End of missing parameters */
 } /* End of input parameter display */
 /**/
 /* Any further DataAgent routine processing would go here. */
 /**/
 return 0;
}

Figure 34: DFM DataAgent Sample Routine Part 5 of 5

DFMXAGNT 63

64 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix D. DFMXSORT

System SAMPLIB member DFMXSORT, for example, SYS1.SAMPLIB(DFMXSORT) shown in Figure 35 on
page 65, shows how a DFM DataAgent can be written in assembler language to invoke SORT.

 TITLE 'DFMXSORT - DFM DataAgent Sort Sample'
*/**
*/*PROPRIETARY V3 STATEMENT *
*/*LICENSED MATERIALS - PROPERTY OF IBM *
*/*5695-DF1 *
/(C) COPYRIGHT 1997 IBM CORP. *
*/*END PROPRIETARY V3 STATEMENT *
*/**
*/**
/ *
/ $MOD(DFMXSORT) COMP(5695-DF120) *
/ *
/ MODULE NAME: DFMXSORT *
/ *
/ DESCRIPTION: DFM DataAgent Sample Routine (SORT) *
/ *
/ STATUS: Version 1 Release 4.0 (DFSMS) *
/ *
/ COPYRIGHT: See copyright statement on previous page *
/ *
/ FUNCTION: This module illustrates how a DFM DataAgent can *
/ be written in assembler language to invoke SORT. It is *
/ implemented with a basic function that assumes the input *
/ filename matches the SORTIN DD statement. It changes the *
/ filename from SORTIN to SORTOUT so that any retrieval through *
/ DFM will retrieve the sorted data rather than the original. *
/ *
/ Code commentary is provided to show how the *
/ function could be extended to use the input filename for *
/ dynamic allocation and to derive an output filename. The *
/ commentary also discusses how this DataAgent could request *
/ that it be called again at file close time to access and *
/ possibly write the output file's data to the original file. *
/ *
/ PROCESSING: *
/ *
/ LOGIC: *
/ Refer to block comments in the code. *
/ *
/ ERROR PROCESSING: *
/ Issue a WTO and then return with register 15 set to a *
/ non-zero value and with the reason code set to a unique *
/ value. SORT error messages will be in the JOBLOG. *
/ *

Figure 35: DFM DataAgent Sort Sample Part 1 of 7

© Copyright IBM Corp. 1993, 2017 65

/ NOTES: *
/ *
/ PATCH SPACE: None *
/ XAX CONSIDERATIONS: AMODE(31) RMODE(ANY) ENV(PRI) *
/ DEPENDENCIES: None *
/ RESTRICTIONS: None *
/ REGISTER CONVENTIONS: Standard *
/ SERIALIZATION: No serialization techniques are used by this *
/ module. *
/ *
/ MODULE TYPE: Procedure *
/ PROCESSOR: z/OS Assembler *
/ ATTRIBUTES: *
/ TYPE: Not reentrant *
/ PRIMARY ASID: Caller's ASID *
/ SECONDARY ASID: Same as primary *
/ HOME ASID: Same as primary *
/ MODE: Task *
/ KEY: 8 *
/ STATE: Problem program, non-APF-authorized *
/ LOCATION: Link library *
/ *
/ ENTRY POINT: DFMXSORT *
/ *
/ PURPOSE: Show that a DataAgent routine can invoke SORT. *
/ LINKAGE: Called by Distributed FileManager. *
/ INPUT: Refer to the DFM Guide and Reference for a general *
/ description of the parameter list format. *
/ *
/ MESSAGES: Refer to WTO statements. *
/ *
/ EXIT NORMAL: *
/ *
/ RETURN CODE: Register 15 = 0 *
/ REASON CODE: Not applicable *
/ MESSAGE ID: None: *
/ *
/ EXIT ERRORS: *
/ *
/ RETURN CODE: Register 15 = 8 *
/ REASON CODE: Unique values set in the extended parameter *
/ list *
/ MESSAGE ID: See WTO statements. *
/ *
/ EXTERNAL REFERENCES: None *
/ *
/ CHANGE ACTIVITY: *
/ $L0=DFSMS14,HDZ11D0,960628,SJPLMMR: DFM DataAgent initial code *
*/**
DFMXSORT AMODE 31
DFMXSORT RMODE ANY
DFMXSORT CSECT

Figure 36: DFM DataAgent Sort Sample Part 2 of 7

66 z/OS: DFSMS Distributed FileManager Guide and Reference

* This program is used as a DataAgent routine to get control *
* when a workstation's SdU application opens a remote MVS file *
* with a filename suffix specifying "agent(dfmxsort)". The file is *
* assumed to be in the format of the sample file created earlier. *
* The input file is sorted and the filename is then changed to the *
* filename of the sort output file. This results in the SdU *
* application's retrieving a sorted subset of the records as if *
* they came from the original file. *
* *
* An alternative invocation method is provided by SdU through *
* the DFMACALL sample application. Refer to it for details. *
* *
* The reason code can be set to -1 to force entry at the file's *
* delete declaration time when adding extended function. *

R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
RTN EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 SAVE (14,12) SAVE REGISTERS
 BALR 12,0 BRANCH AND LINK REG.
 USING *,12 USE REG 12
 ST 13,SAVEAREA+4 SAVE BACKWARD POINTER
 LA 14,SAVEAREA SET FORWARD PT.ER IN CALLER SAVE AREA
 ST 14,8(13)
 LR 13,14 SET OUR SAVE AREA
--
* Determine whether we are defining or deleting the file *
* declaration (i.e. previous to OPEN or after CLOSE). *
--
 LR R3,R1 Save original parameter pointers
 SR R15,R15 Clear error code
 USING INPARMS,R3 Address of MVS parameter list
 L R4,EXTPARMP Point to DFM DataAgent parameters
 USING EXTPARMS,R4 Base of DFM DataAgent parameters
 CLC EXTOBJCP,FILNAM Is file being processed?
 BNE EXIT No, exit

Figure 37: DFM DataAgent Sort Sample Part 3 of 7

DFMXSORT 67

--
* Called for a file–see whether declaration or delete *
* declaration. *
--
 CLC EXTCMDCP,DCLFIL Is file being declared?
 BE DODCLFIL Yes, process DCLFIL.
 CLC EXTCMDCP,DELDCL Is file declaration being deleted?
 BE DODELDCL Yes, process DELDCL.
--
* Unknown command type *
--
 WTO 'DFMXSORT: Unknown command code.'
 LA R15,12
 B EXIT
*
--
* DCLFIL Processing *
--
DODCLFIL EQU *
--
* Enhanced function: *
* Set sort input filename from input filename. *
* Set sort output filename to input filename. *
* If output filename is greater than 40 characters then do. *
* Locate last component of filename. *
* If last component of filename is < 4 then *
* Locate last 2 components of filename. *
* If last component(s) are equal to ".SRT" then *
* Replace last component(s) with ".SR2". *
* Else *
* Replace last component(s) with ".SRT". *
* end. *
* Else *
* Append ".SRT" to output filename. *
* Allocate sort input as DISP=SHR. *
* Allocate sort output as DISP=(NEW,CATLG). *
--
--
* Invoke DFSORT with 31-bit parameter list *
--
 LR R1,R3 Fetch address of std parm list
 MVC EXTPARMP,=F'-1' End of list
 LINK EP=SORT Invoke DFSORT
 LTR R15,R15 Check for SORT failure
 BNZ SORTERR Branch if error
*
--
* Enhanced function: *
* Set modified filename generated for output file allocation. *
* Set reason code to -1 to force recall for DELDCL. *
--
*

Figure 38: DFM DataAgent Sort Sample Part 4 of 7

68 z/OS: DFSMS Distributed FileManager Guide and Reference

--
* Return modified filename and filename length to DFM. *
--
 LH R2,EXTOFNLN Get original (input) name length
 CH R2,MAXIFNLN Ensure maximum is not exceeded
 BH OFNISOK Branch–file name is left alone
 CH R2,MINIFNLN Ensure minimum is met
 BL OFNISOK Branch–file name is left alone
 LA R1,EXTOFN Point to beginning of orig fn
 AR R1,R2 Point to end
 LH R15,MINIFNLN Get length of trigger in name
 SR R1,R15 Backup to where trigger appears
 BCTR R15,0 Decrement for execute
 EX R15,COMPNAME Compare last part of name
 BNE OFNISOK Branch–no trigger at name end
* Original file name meets qualifications–modify file name.
 LA R3,EXTMFN Set pointer to modified file name.
 LR R1,R2 Set length of filename.
 SH R1,MINIFNLN Backup to trigger (=root end)
 BCTR R1,0 Decrement for execute
 EX R1,MOVENAME Move input name beginning to output
 LA R1,1(R1) Restore length
 AR R3,R1 Point to end of root
 LH R15,MODIFLEN Get length of modifier
 BCTR R15,0 Decrement for execute
 EX R15,CHANGENM Change name to root + modifier
 SH R2,MINIFNLN Decrement trigger length
 AH R2,MODIFLEN Add modifier length
 STH R2,EXTMFNLN Set output name length
OFNISOK EQU * Here if changed/no change to do
 SR R15,R15 Exit with no error
 B EXIT Exit DataAgent DCLFIL routine
COMPNAME CLC 0(0,R1),TRIGGER Compare name to trigger string
MOVENAME MVC EXTMFN(0),EXTOFN Move original name to modified name
CHANGENM MVC 0(0,R3),MODIFIER Move modifier string to end of name
*
--
* SORT error occurred–refer to JOBLOG for details. *
--
SORTERR EQU *
 LR R2,R15 Save SORT code
 ST R0,EXTRSNC2 Save SORT reason code
 WTO 'DFMXSORT: SORT failure.'
 LR R15,R2 Exit with error
 B EXIT Exit DataAgent routine
*

Figure 39: DFM DataAgent Sort Sample Part 5 of 7

DFMXSORT 69

--
* DELDCL Processing *
--
DODELDCL EQU *
 WTO 'DFMXSORT: Can delete IBMUSER.DFMXSORT.SORTOUT now.'
--
* Enhanced function: *
* Copy the changes to the permanent file. *
--
 SR R15,R15 Exit with no error
 B EXIT Exit with return code from Sort
--
* Exit *
--
EXIT EQU *
 L 13,4(,13) GET RETURN ADDRESS
 RETURN (14,12),RC=(15) RESTORE REGS,FLAG SAVEAREA,SET RC
SAVEAREA DC 18F'00'
 LTORG
*
--
* Define input parameters. *
--
* In this case, the standard format MVS parameter list should be*
* a halfword length field followed by a DFSORT extended *
* parameter list. For example, Sort by ascending characters in *
* columns 17-22 is: *
* SORT FIELDS=(17,6,CH,A) *
--
*
--
* Constants for use with the DFM DataAgent extended parameters. *
--
DCLFIL DC X'102C' Declare file command code point
DELDCL DC X'102D' Delete declare file command code point
DRCNAM DC X'1165' Directory is being declared
FILNAM DC X'110E' File is being declared
--
* Local Constants *
--
MAXIFNLN DC H'53' Maximum allowing for trigger->modifier
MINIFNLN DC H'6' Minimum orig name len (= len of trigger)
TRIGGER DC CL6'SORTIN' Trigger in input filename
MODIFLEN DC H'7' Length of modifier
MODIFIER DC CL7'SORTOUT' Modifier for output filename

Figure 40: DFM DataAgent Sort Sample Part 6 of 7

70 z/OS: DFSMS Distributed FileManager Guide and Reference

--
* Parameter list pointers. *
--
INPARMS DSECT
STDPARMP DS A(0) Ptr to standard format MVS parameter list
EXTPARMP DS A(0) Ptr to extended DFM parameter list
*
--
* Standard MVS parameter list for SORT usage. *
--
STDPARMS DSECT
STDPARML DS H Length of parameters
STDPARMC DS CL256 Standard parameter string
*
*
--
* Extended parameter list unique to DFM. *
--
EXTPARMS DSECT
EXTPARML DS H Length of parameters
 DS H Reserved
EXTCMDCP DS H Command code point
EXTOBJCP DS H Object code point
EXTOFNLN DS H Original filename length
EXTOFN DS CL54 Original filename
EXTMFNLN DS H Modified filename length
EXTMFN DS CL54 Modified filename
EXTRSNC1 DS F Reason code 1
EXTRSNC2 DS F Reason code 2
*
 END DFMXSORT

Figure 41: DFM DataAgent Sort Sample Part 7 of 7

DFMXSORT 71

72 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix E. DFMXSRTI

System SAMPLIB member DFMXSRTI, for example, SYS1.SAMPLIB(DFMXSRTI) shown in Figure 42 on
page 73, shows how to install the DFMXSORT DataAgent routine.

//DFMXSRTI JOB ,'DFMXSORT SETUP',MSGLEVEL=(1,1),MSGCLASS=A,
// USER=IBMUSER,PASSWORD=IBM,REGION=1M
//**/
//*PROPRIETARY V3 STATEMENT
//*LICENSED MATERIALS - PROPERTY OF IBM
//*5695-DF1
//*(C) COPYRIGHT 1997 IBM CORP.
//*END PROPRIETARY V3 STATEMENT
//**/
//* Sample installation for DFMXSORT DataAgent routine. Modify the
//* job statement, etc. as appropriate for your installation.
//**/
//* This sample uses &PREFIX to generate input and output filenames.
//* For example, &PREFIX.SORTIN will be used for input and
//* &PREFIX.SORTOUT will be used for output.
//*
//* A sample input file, IBMUSER.DFMXSORT.SORTIN, is also provided.
//*
//* It could be cloned with other filenames and sort parameters
//* or could be generalized to use dynamic allocation for the
//* input and output files. Pseudocode is included to illustrate
//* the types of changes that would be required. If changes are
//* made, then you must remove DD statements for SORTIN and
//* SORTOUT from the cataloged procedure.
//*
//* Once this installation job has run, logon to a workstation with
//* the prerequisite level of SdU and with an APPC connection to the
//* mainframe and issue the following command:
//* dfmacall agent x:ibmuser.dfmxsort.sortin
//* 'dfmxsort,prefix=ibmuser.dfmxsort'
//* parm 'sort fields=(17,6,ch,a)'
//*
//* Refer to DFMACALL for details.
//*
//**/

Figure 42: Sample Installation for the DFMXSORT DataAgent Routine Part 1 of 4

© Copyright IBM Corp. 1993, 2017 73

//**/
//* Clean up test data sets. Remove this step from production version.
//**/
//CLEANUP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (-
 IBMUSER.DFMXSORT.* -
) NONVSAM PURGE SCRATCH
 IF LASTCC = 8 THEN DO
 SET LASTCC = 0
 SET MAXCC = 0
 END
/*

//**/
//* Generate SORTIN and allocate SORTOUT */
//**/
//STEP1 EXEC PGM=IEBGENER
//SYSUT2 DD
DSN=IBMUSER.DFMXSORT.SORTIN,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// SPACE=(TRK,(1,1))
//SORTOUT DD DSN=IBMUSER.DFMXSORT.SORTOUT,DISP=(NEW,CATLG),
//
UNIT=SYSDA,DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// SPACE=(TRK,(1,1))
//* Create records with a 6 character sort field in column 17
//* and with a flag in column 40 that is used to omit (=1) or
//* include the record. The program itself contains the parameters
//* for the sort (ascending on columns 17-22) and the control file
//* contains the definition of what records to include/omit.
//SYSUT1 DD DATA
RECORD NUMBER = 000030, OMIT FLAG IS = 1
RECORD NUMBER = 000888, OMIT FLAG IS = 0
RECORD NUMBER = 000887, OMIT FLAG IS = 1
RECORD NUMBER = 099999, OMIT FLAG IS = 0
RECORD NUMBER = 100000, OMIT FLAG IS = 1
RECORD NUMBER = 100001, OMIT FLAG IS = 0
RECORD NUMBER = 111111, OMIT FLAG IS = 1
RECORD NUMBER = 111110, OMIT FLAG IS = 1
RECORD NUMBER = 211111, OMIT FLAG IS = 0
RECORD NUMBER = 999999, OMIT FLAG IS = 1
RECORD NUMBER = 000000, OMIT FLAG IS = 0
/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

Figure 43: Sample Installation for the DFMXSORT DataAgent Routine Part 2 of 4

74 z/OS: DFSMS Distributed FileManager Guide and Reference

//***
//* Assemble the DataAgent Sample DFMXSORT
//***
//ASM01 EXEC PGM=IEV90,PARM='OBJECT,NODECK'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSLIN DD DSN=&&DFMXSORT,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(2,2,2))
//SYSIN DD DSN=SYS1.SAMPLIB(DFMXSORT),DISP=SHR
//**
//* Link Edit DataAgent Routine DFMXSORT *
//**
//LINK1 EXEC
PGM=IEWL,PARM='XREF,LET,LIST,AMODE=31,RMODE=ANY'
//SYSPRINT DD SYSOUT=*
//OBJ DD DSN=&&DFMXSORT,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=SYS1.LINKLIB(DFMXSORT),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(80,10))
//SYSLIN DD *
 INCLUDE OBJ
 ENTRY DFMXSORT
 NAME DFMXSORT(R)
/*
//***
//* Build Agent JCL in SYS1.PROCLIB
//***
//STEP1 EXEC PGM=IEBGENER
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMXSORT)
//SYSUT1 DD DATA
//DFMXSORT JOB ,MSGCLASS=A
//***
//* Set appropriate msgclass above for debug vs production
//***
//DFMXSORT PROC DFMINIT=,PREFIX=IBMUSER.DFMXSORT
//DFMAGENT EXEC PGM=&DFMINIT
//***
//* Run DFMXSORT DataAgent Sample
//*
//* Sort input comes from IBMUSER.DFMXSORT.SORTIN by default.
//* Sorted data goes into IBMUSER.DFMXSORT.SORTOUT by default.
//* You should modify the names, space allocation, etc. as appropriate
//* for your installation.

Figure 44: Sample Installation for the DFMXSORT DataAgent Routine Part 3 of 4

DFMXSRTI 75

//***
//* Add STEPLIB statements as appropriate for your installation.
//*STEPLIB DD DSN=...,DISP=SHR
//* DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=&PREFIX..SORTIN,DISP=SHR
//SORTOUT DD DSN=&PREFIX..SORTOUT,DISP=SHR
//SORTCNTL DD DSN=SYS1.PROCLIB(DFMXSORI),DISP=SHR
//DFMXSORT PEND
//GO EXEC DFMXSORT
/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//***
//* Build omit control statement in SYS1.PROCLIB
//***
//STEP2 EXEC PGM=IEBGENER
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMXSORI)
//SYSUT1 DD DATA
* The following omit statement will ensure that only the
* records without a 1 in column 40 appear in the sortout data set
 OMIT COND=(40,4,CH,EQ,C'1')
/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

Figure 45: Sample Installation for the DFMXSORT DataAgent Routine Part 4 of 4

76 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix F. DFMQTSO

System SAMPLIB member DFMQTSO, for example, SYS1.SAMPLIB(DFMQTSO) shown in Figure 46 on
page 77, shows how a DFM DataAgent can be written in assembler language to invoke TSO. The
DFMQTSO routine links to the IKJTSOEV function.

 TITLE 'DFMQTSO - DFM DataAgent TSO Sample'
*/**
*/*PROPRIETARY V3 STATEMENT *
*/*LICENSED MATERIALS - PROPERTY OF IBM *
*/*5695-DF1 *
/(C) COPYRIGHT 1997 IBM CORP. *
*/*END PROPRIETARY V3 STATEMENT *
*/**
*/**
/ *
/ $MOD(DFMQTSO) COMP(5695-DF120) *
/ *
/ MODULE NAME: DFMQTSO (Quick TSO-Input in PARM) *
/ *
/ DESCRIPTION: DFM DataAgent Sample Routine (TSO) *
/ *
/ STATUS: Version 1 Release 4.0 (DFSMS) *
/ *
/ COPYRIGHT: See copyright statement on previous page *
/ *
/ FUNCTION: This module illustrates how a DFM DataAgent can *
/ be written in assembler language to invoke TSO. *
/ *
/ SdU provides a sample application, DFMACALL, that can be *
/ to invoke this sample. Refer to it for details. *
/ *
/ Refer to 'TSO Extensions for MVS: Programming Services' for *
/ information about using the TSO environment service used in *
/ this example. *
/ *
/ PROCESSING: *
/ *
/ LOGIC: *
/ Refer to block comments in the code. *
/ *
/ ERROR PROCESSING: *
/ Issue a WTO and then return with register 15 set to a *
/ non-zero value and with the reason code set to a unique *
/ value. *
/ *

Figure 46: DFM DataAgent Sample Routine (TSO) Part 1 of 7

© Copyright IBM Corp. 1993, 2017 77

/ NOTES: *
/ *
/ PATCH SPACE: None *
/ XAX CONSIDERATIONS: AMODE(31) RMODE(ANY) ENV(PRI) *
/ DEPENDENCIES: None *
/ RESTRICTIONS: None *
/ REGISTER CONVENTIONS: Standard *
/ SERIALIZATION: No serialization techniques are used by this *
/ module. *
/ *
/ MODULE TYPE: Procedure *
/ PROCESSOR: z/OS Assembler *
/ ATTRIBUTES: *
/ TYPE: Not reentrant *
/ PRIMARY ASID: Caller's ASID *
/ SECONDARY ASID: Same as primary *
/ HOME ASID: Same as primary *
/ MODE: Task *
/ KEY: 8 (Current task TCBPKF=jobstep task TCBPKF)*
/ STATE: Problem program, non-APF-authorized *
/ LOCATION: Link library *
/ *
/ ENTRY POINT: DFMQTSO *
/ *
/ PURPOSE: Show that a DataAgent routine can invoke TSO. *
/ LINKAGE: Called by Distributed FileManager. *
/ INPUT: Refer to the DFM Guide and Reference for a general *
/ description of the parameter list format. Refer to *
/ DFMACALL documentation for command line invocation from *
/ SdU. *
/ *
/ MESSAGES: Refer to WTO statements. *
/ *
/ EXIT NORMAL: *
/ *
/ RETURN CODE: Register 15 = 0 *
/ REASON CODE: Not applicable *
/ MESSAGE ID: None: *
/ *
/ EXIT ERRORS: *
/ *
/ RETURN CODE: Register 15 = non-zero *
/ REASON CODE: Unique values set in the extended parameter *
/ list *
/ MESSAGE ID: See WTO statements. *
/ *
/ EXTERNAL REFERENCES: None *
/ *
/ CHANGE ACTIVITY: *
/ $L0=DFSMS14,HDZ11D0,960628,SJPLMMR: DFM DataAgent initial code *
*/**

Figure 47: DFM DataAgent Sample Routine (TSO) Part 2 of 7

78 z/OS: DFSMS Distributed FileManager Guide and Reference

DFMQTSO CSECT
DFMQTSO AMODE 31
DFMQTSO RMODE ANY
 STM R14,R12,12(R13)
 BALR R12,0
 USING *,R12
 ST R13,SAVEAREA+4
 LA R11,SAVEAREA
 ST R11,8(,R13)
 LA R13,SAVEAREA
 LR R3,R1 Save original parameter pointers
 SR R15,R15 Clear error code
 USING INPARMS,R3 Address of MVS parameter list
 L R4,STDPARMP Point to DFM DataAgent parameters
 USING STDPARMS,R4 Base of DFM DataAgent parameters
 L R5,EXTPARMP Point to DFM DataAgent parameters
 USING EXTPARMS,R5 Base of DFM DataAgent parameters
--
* Called for a file or directory. See whether declaration *
* is being created or deleted. *
--
 CLC EXTCMDCP,DCLFIL Is file being declared?
 BE DODCLFIL Yes, process DCLFIL.
 CLC EXTCMDCP,DELDCL Is file declaration being deleted?
 BE DODELDCL Yes, process DELDCL.
--
* Unknown command type *
--
 WTO 'DFMQTSO: Unknown command code.'
 LA R15,16 Exit without trying to set reason code
 B EXIT
*
--
* DCLFIL Processing (DCLFIL, or Declare File, is a DDM, *
* Distributed Data Management, command issued when a remote *
* file or directory is about to be opened) *
--
DODCLFIL EQU *
 WTO 'DFMQTSO: Declaring a file.'

* CALTSOEV - CALL THE TSO/E ENVIRONMENT SERVICE TO ESTABLISH A TSO/E
* ENVIRONMENT IN THIS PROGRAM'S ADDRESS SPACE.
* PARM1 IS RESERVED
* PARM2 IS A FULLWORD THAT WILL CONTAIN THE RETURN CODE FROM IKJTSOEV
* PARM3 IS A FULLWORD THAT WILL CONTAIN THE REASON CODE ON RETURN
* FROM IKJTSOEV.
* PARM4 IS A FULLWORD THAT WILL CONTAIN THE ABEND CODE, IF AN ABEND
* OCCURS DURING TSO/E ENVIRONMENT SERVICE PROCESSING.
* PARM5 IS A FULLWORD THAT WILL CONTAIN THE ADDRESS OF THE CPPL.

CALTSOEV DS 0H
 XC PARM1,PARM1
 LINK EP=IKJTSOEV,ERRET=LE,PARAM=(PARM1,PARM2,PARM3,PARM4,PARM*
 5),VL=1

Figure 48: DFM DataAgent Sample Routine (TSO) Part 3 of 7

DFMQTSO 79

* CHKEVRC - CHECK THE RETURN CODE FROM IKJTSOEV

CHKEVRC DS 0H
 L R2,PARM2
 LTR R2,R2
 BNZ BADEVRC

* TSO Environment established–process the input file.

* CALLTSR - Call IKJEFTSR to process the input file or the parameter
* list–depending on whether a parameter list is present.
* The output from the commands will go to the SYSTSPRT file.

CALLTSR DS 0H
 LH R2,STDPARML Get length of input parameters
 LTR R2,R2 If zero then use the input file
 BZ USEINFIL
 ST R2,BUFLEN Set buffer length
 BCTR R2,0
 EX R2,COPYCMD Copy command to parameter area
 L R15,CVTPTR
 L R15,CVTTVT(,R15)
 L R15,TSVTASF-TSVT(,R15)
 CALL (15),(FLAGS,CMDBUFF,BUFLEN,RETCODE,RSNCODE,ABNDCODE),VL

* DOALL - At this point, process the return values from
* IKJEFTSR and the invoked functions.

DOALL DS 0H
 LTR R15,R15
 BZ EXIT Exit if no error
 C R15,=F'4' Did CLIST or REXX exec fail?
 BNE SAVERC No, just ensure RC is saved
 MVC RSNCODE,RETCODE Use CLIST/REXX RC as reason code
SAVERC ST R15,RETCODE Ensure a retcode is set
 WTO 'DFMQTSO: IKJEFTSR failed.'
 L R15,RETCODE Set return code
 MVC EXTRSNC1,RSNCODE Set reason code 1
 MVC EXTRSNC2,ABNDCODE Set reason code 2 to ABEND code
 B EXIT
COPYCMD MVC CMDBUFF(0),STDPARMC
*

Figure 49: DFM DataAgent Sample Routine (TSO) Part 4 of 7

80 z/OS: DFSMS Distributed FileManager Guide and Reference

--
* SYSTSIN Processing *
--
USEINFIL EQU *
 WTO 'DFMQTSO: SYSTSIN input not supported. Use DFMXTSO.'
 LA R15,8
 B EXIT
*
--
* DELDCL Processing (DELDCL, or Delete Declaration, is a DDM, *
* Distributed Data Management, command issued after a remote *
* file or directory has been closed) *
--
DODELDCL EQU *
 WTO 'DFMQTSO: Deleting file declaration.'
 SR R15,R15 Exit with no error
 B EXIT Exit with return code from Sort

* LE - Branch here if LINK failed. The ABEND code will be in
* register 1 but there will be no reason code. Set the
* return code to 8 and use the ABEND code as the reason code.

*
LE DS 0H
 ST R1,EXTRSNC1 Save the ABEND code
 WTO 'DFMQTSO: LINK to IKJTSOEV failed.'
 LA R15,8
 B EXIT
*

* BADEVRC - Branch here if IKJTSOEV returned a non-zero return code.
* If the program branches here, it will exit with an error.
* In the DFM diagnostics, the error data will be as follows:
* RETURN CODE - THE RETURN CODE FROM IKJTSOEV
* REASON CODE 1 - THE REASON CODE FROM IKJTSOEV
* REASON CODE 2 - THE ABEND CODE FROM IKJTSOEV

BADEVRC DS 0H
 WTO 'DFMQTSO: IKJTSOEV error occurred.'
 L R15,PARM2
 MVC EXTRSNC1,PARM3
 MVC EXTRSNC2,PARM4
 B EXIT

Figure 50: DFM DataAgent Sample Routine (TSO) Part 5 of 7

DFMQTSO 81

* EXIT - RETURN TO CALLING PROGRAM

EXIT DS 0H
 L R13,4(,R13)
 RETURN (14,12),RC=(15) RESTORE REGS,FLAG SAVEAREA,SET RC
*
* REGISTER EQUATES
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
* PARAMETERS USED TO INVOKE THE TSO/E ENVIRONMENT SERVICE
PARM1 DS F RESERVED FIELD
PARM2 DS F RETURN CODE FIELD
PARM3 DS F REASON CODE FIELD
PARM4 DS F FUNCTION ABEND CODE
PARM5 DS F CPPL ADDRESS
* PARAMETERS USED TO INVOKE THE TSO SERVICE FACILITY
FLAGS DS 0F FULLWORD OF FLAGS
RESFLAGS DC H'0001' ESTABLISH UNAUTHORIZED ENVIRONMENT
ABFLAGS DC X'01' PRODUCE A DUMP IF FUNCTION ABENDS
FNCFLAGS DC X'01' INVOKE TSO/E CMD, REXX EXEC, CLIST
CMDBUFF DS 256C COMMAND BUFFER
BUFLEN DS F LENGTH OF COMMAND BUFFER
RETCODE DS F FUNCTION RETURN CODE
RSNCODE DS F FUNCTION REASON CODE
ABNDCODE DS F FUNCTION ABEND CODE
CVTPTR EQU 16 THESE 2 PARMS ARE USED TO GET
CVTTVT EQU X'9C' ADDR OF THE TSO SERVICE FACILITY
* SAVEAREA AND OTHER PROGRAM STORAGE
SAVEAREA DS 18F
* TSVT MAPPING MACRO (USED TO GET THE ADDRESS OF TSO SERVICE FACILITY)
 IKJTSVT
DFMQTSO CSECT
 LTORG
*
--
* Define input parameters. *
--
* The standard format MVS parameter list is a halfword length *
* field followed by a parameter list. In this case the *
* parameter list is a TSO command. *
--
*

Figure 51: DFM DataAgent Sample Routine (TSO) Part 6 of 7

82 z/OS: DFSMS Distributed FileManager Guide and Reference

--
* Constants for use with the DFM DataAgent extended parameters. *
--
DCLFIL DC X'102C' Declare file command code point
DELDCL DC X'102D' Delete declare file command code point
DRCNAM DC X'1165' Directory is being declared
FILNAM DC X'110E' File is being declared
--
* Parameter list pointers. *
--
INPARMS DSECT
STDPARMP DS A(0) Ptr to standard format MVS parameter list
EXTPARMP DS A(0) Ptr to extended DFM parameter list
*
--
* Standard MVS parameter list for SORT usage. *
--
STDPARMS DSECT
STDPARML DS H Length of parameters
STDPARMC DS CL256 Standard parameter string
*
*
--
* Extended parameter list unique to DFM. *
--
EXTPARMS DSECT
EXTPARML DS H Length of parameters
 DS H Reserved
EXTCMDCP DS H Command code point
EXTOBJCP DS H Object code point
EXTOFNLN DS H Original filename length
EXTOFN DS CL54 Original filename
EXTMFNLN DS H Modified filename length
EXTMFN DS CL54 Modified filename
EXTRSNC1 DS F Reason code 1
EXTRSNC2 DS F Reason code 2
*
 END DFMQTSO

Figure 52: DFM DataAgent Sample Routine (TSO) Part 7 of 7

DFMQTSO 83

84 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix G. DFMXTSOI

System SAMPLIB member DFMXTSOI, for example, SYS1.SAMPLIB(DFMXTSOI) shown in Figure 53 on
page 85, shows how to install the two DataAgent routines: DFMXTSO and DFMQTSO.

//DFMXTSOI JOB ,'DFMXTSO SETUP',MSGLEVEL=(1,1),MSGCLASS=A,
// USER=IBMUSER,PASSWORD=IBM,REGION=1M
//**/
//*PROPRIETARY V3 STATEMENT
//*LICENSED MATERIALS - PROPERTY OF IBM
//*5695-DF1
//*(C) COPYRIGHT 1997 IBM CORP.
//*END PROPRIETARY V3 STATEMENT
//**/
//* Install two TSO DataAgent routines, DFMXTSO and DFMQTSO by
//* installing two procedures DFMXTSO and DFMQTSO and by producing
//* a load module for DFMQTSO. No executable is produced for
//* procedure (or DataAgent) DFMXTSO because it uses the standard
//* TSO batch program, IKJEFT01.
//*
//* DFMXTSO is full function in that it is intended to be used with
//* IKJEFT01 which accepts input from SYSTSIN. DFMQTSO (or quick
//* TSO) only accepts input from the PARM() parameter.
//*
//* Once this installation job has run, DFMACALL TSO or DFMACALL QTSO
//* can be run from a workstation that has SdU installed and that has
//* an APPC connection to the mainframe. Refer to DFMACALL for
//* details. (Note that you might want to set up some typical
//* SYSTSIN files and preallocate several SYSTSPRT files for the
//* anticipated users.)
//*

Figure 53: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 1 of 7

//**/
//* General setup */
//**/
//**/
//* Clean up old SYSTSIN and SYSTSPRT files. */
//* (Remove or modify if copying this to production JCL.) */
//**/
//CLEANUP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (-
 IBMUSER.DFMXTSO.SYSTSIN -
) NONVSAM PURGE SCRATCH
 DELETE (-
 IBMUSER.DFMQTSO.SYSTSPRT -
) NONVSAM PURGE SCRATCH
 DELETE (-
 IBMUSER.DFMXTSO.SYSTSPRT -
) NONVSAM PURGE SCRATCH
 IF LASTCC = 8 THEN
 DO
 SET LASTCC = 0
 SET MAXCC = 0
 END

Figure 54: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 2 of 7

© Copyright IBM Corp. 1993, 2017 85

/*
//**/
//* Allocate output files */
//* (Remove or modify if copying this to production JCL.) */
//**/
//ALLOCATE EXEC PGM=IEFBR14
//ALLOC1 DD DSN=IBMUSER.DFMQTSO.SYSTSPRT,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(DSORG=PS,LRECL=121,BLKSIZE=0,RECFM=FBA),
// SPACE=(TRK,(15,5))
//ALLOC2 DD DSN=IBMUSER.DFMXTSO.SYSTSPRT,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(DSORG=PS,LRECL=121,BLKSIZE=0,RECFM=FBA),
// SPACE=(TRK,(15,5))
//**/
//* Generate sample input file for full function DFMXTSO */
//* (Remove or modify if copying this to production JCL.) */
//**/
//GENINPUT EXEC PGM=IEBGENER
//SYSUT2 DD DSN=IBMUSER.DFMXTSO.SYSTSIN,DISP=(NEW,CATLG),UNIT=SYSDA,
// DCB=(LRECL=80,BLKSIZE=0,RECFM=FB),
// SPACE=(TRK,(1,1))
//SYSUT1 DD DATA
 /* This is a sample input file for SYSTSIN. */
 LISTC
/*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*

Figure 55: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 3 of 7

//**/
//* 1. Setup for the DFMXTSO DataAgent procedure. Modify the job
//* statement, etc. as appropriate for your installation.
//**/
//* This setup job installs a sample procedure, DFMXTSO, to allow
//* workstations to invoke TSO.
//*
//* The procedure is intended to be used with PGM(IKJEFT01) and will
//* accept input from both the PARM field (processed first) and
//* from userID.DFMXTSO.SYSTSIN.
//*
//* It uses userID.DFMXTSO.SYSTSPRT to contain the TSO output.
//*
//* Note that SYSTSPRT allocation is DISP=SHR.
//* This causes SYSTSPRT to be reset each invocation
//* of TSO so the output produced by a file declaration
//* will be overlain by a subsequent delete file declaration.
//* Therefore, end users or applications will have to use the
//* SYSTSPRT file contents before closing the file replaces it.
//* The SYSTSPRT allocation could also be changed to DISP=MOD to
//* cause appending of output.
//*
//* You must create the SYSTSPRT or SYSTSIN files that
//* will be needed before invoking the exit. If parameters are
//* to be passed through the PARM field only, SYSTSIN could
//* be changed to DD DUMMY or the input file could be cleared.
//*
//* The exit must be invoked with at least the following
//* parameters: ...,AGENT(DFMXTSO,U=userID),PARM(...)
//*
//* (DFM for z/OS will automatically provide the U=userID parameter)
//*
//**/

Figure 56: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 4 of 7

86 z/OS: DFSMS Distributed FileManager Guide and Reference

//***
//* Build Agent JCL in SYS1.PROCLIB
//***
//GENPROC1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMXTSO)
//SYSUT1 DD DATA
//DFMXTSO JOB ,MSGCLASS=A
//***
//* Set appropriate msgclass above for debug vs production
//* Note that DFM will provide the DFMINIT parameter and the
//* U parameter (high-level name qualifier or userID).
//***
//DFMXTSO PROC DFMINIT=,U=
//DFMAGENT EXEC PGM=&DFMINIT.,
// PERFORM=2,
// REGION=5000K,
// DYNAMNBR=20
//***
//* Run DFMXTSO DataAgent Sample
//***
//* Add STEPLIB statements as appropriate for your installation.
//* Note that if IKJEFT01 was installed into LPALIB, a STEPLIB will
//* be required because DFM's DataAgent processing uses the BLDL
//* function.
//*STEPLIB DD DSN=...,DISP=SHR
//* DD DSN=SYS1.LINKLIB,DISP=SHR
//* DD DSN=SYS1.LPALIB,DISP=SHR <-- See note above
//*
//* TSO/E input comes from the SYSTSIN file (as well as from PARM).
//*
//* TSO/E output goes to the SYSTSPRT file.
//*
//* Sample using a generic CLIST...
//*SYSPROC DD DSN=&U..CLIST.CLIST,DISP=SHR
//SYSPROC DD DSN=SYS1.CLIST,DISP=SHR
//SYSTSIN DD DSN=&U..DFMXTSO.SYSTSIN,DISP=SHR
//SYSTSPRT DD DSN=&U..DFMXTSO.SYSTSPRT,DISP=SHR
//SYSOUT DD SYSOUT=*
//DFMXTSO PEND
//GO EXEC DFMXTSO
/*

Figure 57: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 5 of 7

DFMXTSOI 87

//**/
//* 2. Setup for the DFMQTSO DataAgent procedure. Modify the job
//* control statements, etc. as appropriate for your installation.
//**/
//* This setup job installs a sample procedure, DFMQTSO, to allow
//* workstations to invoke program DFMQTSO which will, in turn, invoke
//* IKJTSOEV to establish the TSO environment and then call TSO to
//* process the input from the PARM field. It ignores file
//* userID.DFMXTSO.SYSTSIN.
//*
//* Like DFMXTSO, it uses userID.DFMXTSO.SYSTSPRT to contain
//* the TSO output.
//*
//* The exit must be invoked with at least the following
//* parameters: ...,AGENT(DFMQTSO,U=userID),PARM(...)
//*
//* (DFM for z/OS will automatically provide the U=userID parameter)
//*
//**/
//***
//* Assemble the Quick TSO Sample DataAgent Routine, DFMQTSO
//***
//ASM01 EXEC PGM=IEV90,PARM='OBJECT,NODECK'
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSUT3 DD UNIT=SYSDA,SPACE=(1700,(600,100))
//SYSLIN DD DSN=&&DFMQTSO,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(2,2,2))
//SYSIN DD DSN=SYS1.SAMPLIB(DFMQTSO),DISP=SHR
//**
//* Link Edit DataAgent Routine DFMQTSO *
//**
//LINK1 EXEC PGM=IEWL,PARM='XREF,LET,LIST,AMODE=31,RMODE=ANY'
//SYSPRINT DD SYSOUT=*
//OBJ DD DSN=&&DFMQTSO,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=SYS1.LINKLIB(DFMQTSO),DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(80,10))
//SYSLIN DD *
 INCLUDE OBJ
 ENTRY DFMQTSO
 NAME DFMQTSO(R)
/*

Figure 58: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 6 of 7

88 z/OS: DFSMS Distributed FileManager Guide and Reference

//***
//* Build DFMQTSO Agent JCL in SYS1.PROCLIB
//***
//GENPROC2 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DISP=SHR,DSN=SYS1.PROCLIB(DFMQTSO)
//SYSUT1 DD DATA
//DFMQTSO JOB ,MSGCLASS=A
//***
//* Set appropriate msgclass above for debug vs production
//* Note that DFM will provide the DFMINIT parameter and the
//* U parameter (high-level name qualifier or userID).
//***
//DFMQTSO PROC DFMINIT=,U=
//DFMAGENT EXEC PGM=&DFMINIT.,
// PERFORM=2,
// REGION=5000K,
// DYNAMNBR=20
//***
//* Run DFMQTSO DataAgent Sample
//***
//* Add STEPLIB statements as appropriate for your installation.
//*STEPLIB DD DSN=...,DISP=SHR
//* DD DSN=SYS1.LINKLIB,DISP=SHR
//*
//* Sample shown using a global CLIST library.
//*SYSPROC DD DSN=&U..CLIST.CLIST,DISP=SHR
//SYSPROC DD DSN=SYS1.CLIST,DISP=SHR
//*
//* TSO/E output goes to the SYSTSPRT file.
//*
//SYSTSPRT DD DSN=&U..DFMQTSO.SYSTSPRT,DISP=SHR
//*
//* Note that the program DFMQTSO does not use SYSTSIN for input
//* so a dummy SYSTSIN DD statement is provided.
//*
//SYSTSIN DD DUMMY
//SYSOUT DD SYSOUT=*
//DFMQTSO PEND
//GO EXEC DFMQTSO
/*

Figure 59: Sample Installation for the DFMXTSO and DFMQTSO DataAgent Routines Part 7 of 7

DFMXTSOI 89

90 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix H. System PROCLIB Member DFM

System PROCLIB member DFM, for example, SYS1.PROCLIB(DFM), contains the sample shown in Figure
60 on page 91 of the startup procedures for Distributed FileManager. See “Activating Distributed
FileManager in System PROCLIB” on page 41.

Note: LE is required to use CDRA, if LE is installed and is not in the link list, SYS1.PROCLIB(DFM) and
SYS1.SAMPLIB(GDETPDEF) should be modified so their STEPLIB DD statements refer to the proper LE
runtime library. Refer to DFMREADM in SYS1.SAMPLIB for details.

//DFM PROC PARMS='NORMAL'
//***
//* *
//* DFSMS DFM START UP PROCEDURE *
//* *
//***
//DFM EXEC PGM=GDEISBOT,
// PARM='&PARMS&sssq;,
// REGION=0K,
// TIME=1440
//IEFPARM DD DSN=SYS1.PARMLIB,DISP=SHR
//* CHANGE THE STEPLIB STATEMENT AS REQUIRED IF YOUR INSTALLATION
//* DOES NOT HAVE THE LE RUNTIME DATA SET IN ITS LINK LIST.
//*STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//*
//* THE TWO FILES ASSOCIATED WITH THE DD STATEMENTS CDRATRC AND
//* SYSOUT CAN BE USED TO DIAGNOSE DFM STARTUP PROBLEMS RELATED
//* TO CDRA. (CDRA IS INVOKED DURING STARTUP FOR CERTAIN CCSID
//* VALUES IN THE SYS1.PARMLIB MEMBER DFM00.)
//*
//* YOU MUST ALLOCATE THE TWO FILES AS RECFM=FBA, LRECL=133,
//* AND DSORG=PS BEFORE STARTING DFM WITH THE DD STATEMENTS
//* ACTIVE.
//*
//* NOTE THAT SYSOUT IS REQUIRED AND CDRATRC IS OPTIONAL
//* WHEN USING CDRA AND THE DEFAULT INSTALLATION IS SET UP TO
//* USE CDRA IF YOUR HOST CODE PAGE IS OTHER THAN 500.
//*
//* CDRATRC DD DSN=SYS1.CDRATRC,DISP=SHR CDRA API TRACING
//* SYSOUT DD DSN=SYS1.CDRAOUT,DISP=SHR C RUNTIME MESSAGES
//SYSOUT DD DUMMY <- DEFAULT = CDRA WITH RUNTIME MESSAGES DISCARDED

Figure 60: DFM Startup Procedure

© Copyright IBM Corp. 1993, 2017 91

92 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix I. PPT Entries for Distributed FileManager

Figure 61 on page 93 shows the PPT entries for Distributed FileManager (see “Verifying PPT Entries for
Distributed FileManager” on page 41).

PPT PGMNAME(GDEISASB) /* DFM CONVERSATION ADDRESS SPACE */
 CANCEL /* PROGRAM CAN BE CANCELLED */
 KEY(5) /* PROTECT KEY IS 5 */
 SWAP /* PROGRAM IS SWAPPABLE */
 NOPRIV /* PROGRAM IS NON PRIVILEGED */
 DSI /* REQUIRED DATASET INTEGRITY */
 SYST /* PROGRAM IS A SYSTEM TASK */
 PASS /* CANNOT BYPASS PASSWORD PROTECTION */
 AFF(NONE) /* NO CPU AFFINITY */
 NOPREF /* NO PREFERRED STORAGE FRAMES */

PPT PGMNAME(GDEISBOT) /* DFM SYSTEM INITIALIZATION */
 CANCEL /* PROGRAM CAN BE CANCELLED */
 KEY(5) /* PROTECT KEY IS 5 */
 NOSWAP /* PROGRAM IS NON SWAPPABLE */
 NOPRIV /* PROGRAM IS NON PRIVILEGED */
 DSI /* REQUIRED DATASET INTEGRITY */
 SYST /* PROGRAM IS A SYSTEM TASK */
 PASS /* CANNOT BYPASS PASSWORD PROTECTION */
 AFF(NONE) /* NO CPU AFFINITY */
 NOPREF /* NO PREFERRED STORAGE FRAMES */

PPT PGMNAME(GDEICASB) /* DFM CENTRAL ADDRESS SPACE */
 CANCEL /* PROGRAM CAN BE CANCELLED */
 KEY(5) /* PROTECT KEY ASSIGNED IS FIVE */
 NOSWAP /* PROGRAM IS NON SWAPPABLE */
 NOPRIV /* PROGRAM IS NON PRIVILEGE */
 DSI /* REQUIRES DATA SET INTEGRITY */
 SYST /* PROGRAM IS A SYSTEM TASK */
 PASS /* CANNOT BYPASS PASSWORD PROTECTION */
 AFF(NONE) /* NO CPU AFFINITY */
 NOPREF /* NO PREFERRED STORAGE FRAMES */

Figure 61: PPT Entries for Distributed FileManager

© Copyright IBM Corp. 1993, 2017 93

94 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix J. DFMACALL.C sample

The DataAgent sample in Figure 62 on page 96 demonstrates the ability to invoke DFM DataAgent
functions from C applications on workstations running SmartData Utilities (SdU) on the DDM client. The
sample may need to be modified for your application and your platform. If modified, rename and compile
it on a workstation using the header files distributed with SmartData Utilities (SdU). This sample is not
included in SYS1.SAMPLIB.

© Copyright IBM Corp. 1993, 2017 95

/**
**************************** DFMACALL.C *********************************

*
* DFM DataAgent Sample
*
* Module Name: DFMACALL.C
*
* DDM Workstation Application
*
* Version: 1.0
* Release: 1.0
*
* Copyright (C)
* International Business Machines Corporation 1997
*
* DISCLAIMER OF WARRANTIES: The following (enclosed) code is sample code
* created by the IBM Corporation. This sample code is not a part of any
* IBM product and is provided to you solely for the purpose of assisting
* you in the development of your applications. The code is provided
* "AS IS", without warranty of any kind. IBM shall not be liable for any
* damages arising out of your use of the sample code, even if they have
* been advised of the possibility of such damages.
*
* The sample program does the following:
*
* 1) Construct a filename and filename suffix from the input parameters.
* 2) Do a DDMOpen for the file or directory to trigger MVS suffix
* processing.
* 3) Do a DDMClose for the file or directory to terminate processing.
*
*
* COMMAND LINE INVOCATION:
*
* This sample can be invoked in the following formats:
*
* DFMACALL QTSO driveletter: TSOcommandline [DISPLAY]
* DFMACALL TSO driveletter: [TSOcommandline] [DISPLAY]
* DFMACALL AGENT driveletter:[filename]
MVSprocedure[,procedural_parameters]
* [PGM program_name] [PARM program-parameters]
[DISPLAY]
* DFMACALL START driveletter: MVSprocedure[,procedural_parameters]
* DFMACALL driveletter:filename[,filename_suffix] [DISPLAY]
*

Figure 62: DFM DataAgent Sample Part 1 of 25

* The last format is free-form in which MVS parameters can be specified
* in the filename suffix. Parameters that are relevant to DFM
* DataAgent processing are the following:
* AGENT(agentname) - Specifies the name of a procedure in SYS1.PROCLIB
* that provides the JCL for agent processing and, if PGM is
* omitted, the name of the DataAgent routine (program) to run.
* Note that procedural parameters can also be specifed. For
* example, AGENT(agentname,USER=userID,DSNAME=DS1,...). If
* you use the free-form format, remember to specify PARM also.
* PGM(programname) - Specifies the name of the DataAgent routine.
* PARM(program_name) - Specifies input parameters to the DataAgent
* routine.
* START(procedurename,procedure parameters) - Specifies the name of an
* MVS procedure to be started asynchronously.
* DISPLAY - Displays the result of the call to DFM DataAgent. In the case of
* QTSO or TSO the result is the SYSTSPRT file. In the case of other
* DataAgents it is the output name returned by the DataAgent routine
* after successful invocation.
* See DFMXSORT for an example.
* (Note that DISPLAY can be used as a DataAgent name with DFMACALL
* but not as a TSO command.)
*
* Examples:
*
* dfmacall r:ibmuser.a.b
* ==> Opens and closes MVS file ibmuser.a.b on remote drive r.
*
* dfmacall r:ibmuser.a.b,agent(dfmxagnt)
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmxagnt.
*
* dfmacall r:ibmuser.a.b,agent(dfmx0001),pgm(dfmxagnt)
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmx0001
* ==> with program dfmxagnt.
*
* dfmacall agent r:ibmuser.a.b dfmxagnt
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmxagnt
* ==> with default program dfmxagnt and null parameters implied.
*
* dfmacall agent r:ibmuser.a.b dfmxtso pgm ikjeft01
* ==> Opens and closes MVS file ibmuser.a.b invoking agent dfmxtso
* ==> with (APF-authorized) program ikjeft01. (Equivalent to
* ==> DFMACALL TSO.)
*

Figure 63: DFM DataAgent Sample Part 2 of 25

* dfmacall start r: dfmx0001,dfminit=iefbr14
* ==> Asynchronously starts procedure dfmx0001 with parameter
* ==> dfminit set to iefbr14.
*
* dfmacall qtso r: listc display
* ==> Calls TSO to list catalog entries and place the results
* ==> in IBMUSER.DFMQTSO.SYSTSPRT. No SYSTSIN input file is
* ==> expected. The SYSTSPRT file is displayed.
*
* dfmacall tso r:
* ==> Calls TSO to process input file IBMUSER.DFMXTSO.SYSTSIN
* ==> and put the results in IBMUSER.DFMXTSO.SYSTSPRT.
*
* dfmacall tso r: "profile prefix(ibmuser)" display
* ==> After running the command passed it (in this case "profile")
* ==> it calls TSO to process input file IBMUSER.DFMXTSO.SYSTSIN
* ==> and put the results in IBMUSER.DFMXTSO.SYSTSPRT. Display the
* ==> output file.
*
*
*
***/

#include <os2.h> /* required for VSAM/X applications */
#include <stdio.h>
#include <string.h>
#include <memory.h>
#include <malloc.h>
#include "dub.h" /* required master include for VSAM/X applications */

/*---
-- SYMBOLIC CONSTANTS
--*/
#define FILCLS_SIZE sizeof(OBJLENGTH) + (2 * sizeof(CODEPOINT))
#define FILCLS_NAME ".DDM_FILCLS"
#define RECDATALEN 100
#define RPYMSBFLN 546 /* reply message buffer length */
#define PATHLEN 300 /* path with 45 extra bytes */
#define PARMLEN 255 /* arbitrary maximum parm len */
#define USPARMLEN 255 /* arbitrary max user parm len */
#define MINPQTSO 4 /* minimum parameters for QTSO */
#define MAXPQTSO 5 /* maximum parameters for QTSO */
#define MINPTSO 3 /* minimum parameters for TSO */
#define MAXPTSO 5 /* maximum parameters for TSO */
#define MINPAGENT 4 /* minimum parameters for AGENT */
##define MAXPAGENT 9 /* maximum parameters for AGENT */
#define MINPSTART 4 /* minimum parameters for START */
#define MAXPSTART 4 /* maximum parameters for START */
#define MINPFF 2 /* minimum parameters for FF */
#define MAXPFF 3 /* maximum parameters for FF */

Figure 64: DFM DataAgent Sample Part 3 of 25

/*---
-- LOCAL FUNCTION DECLARATIONS
--*/
int SpecialOptions(int index, int argc, char* argv[]);
int CheckRange(int min, int max, int argc, char uarg[PARMLEN]);
VOID DumpBuffer(PDDMOBJECT pAttribute, USHORT Count);
CODEPOINT ReplyMsg(VOID);
VOID OmitError(VOID);
VOID GeneralError(VOID);
VOID ValueError(char *value);
VOID ParmLenError(char *value);
int strupper(char *out, char *in, int bufflen);
VOID DisplayBuffer(ULONG count, PDDMRECORD pRcdarea);
VOID DuplicateError(VOID);
VOID HasFileNameError(VOID);
VOID NoFileNameError(VOID);
VOID TooManyError(VOID);
VOID NotEnoughError(VOID);
VOID DisplayHelp(char *helpflag);

/*---
-- DFMACALL
--*/

 int dummy_filename = 0; /* Dummy filename flag */
 int display_filename = 0; /* Display filename flag */
 int TSO_retry = 0; /* TSO error retry flag */
 int debug = 1; /* Debug flag: 0 = nothing displayed,*/
 /* 1 = filename display, 2 = all of */
 /* the above plus major functions, */
 /* 5 = all the above plus data. */
 int display_counter = 0; /* Record display counter */
 int intrc; /* internal return code */

main(int argc, char* argv[])
{
 int i; /* Loop counter */
 int fnlen = 0; /* Filename length */
 int pgmcnt = 0; /* Number of PGM parm occurrences */
 int parmcnt = 0; /* Number of PARM parm occurrences */
 int data_follows; /* Data follows in next arg */
 APIRET SevCode; /* Severity code (see DUBDEFS.H) */
 CODEPOINT LCodePoint; /* Local Code Point for reply msg */

Figure 65: DFM DataAgent Sample Part 4 of 25

 PDDMRECORD pRecord;
 RECLENGTH RecordSize;
 PDDMRECAL pRecAL;
 PDDMRECALK pRecALK;
 RECLENGTH RecALSize;
 PBYTE pData;
 HDDMLOAD UnLoad; /* File handle for unload */
 ULONG RecCount;
 ULONG DDMMoreDataFlag;
 int minparms; /* minimum parameters current cmd */
 int maxparms; /* maximum parameters current cmd */

 HDDMFILE FileHandle;

 /* Filename to be operated on */
 CHAR MVSFilename[PATHLEN];
 CHAR RootName[PATHLEN]; /* Root name for TSO retry */
 CHAR dummy_name[9] = "NULLFILE";
 CHAR display_name[PATHLEN];

 CHAR uarg[PARMLEN]; /* Upper case argument */
 CHAR usparg[USPARMLEN]; /* Upper case subparameter */
 /**/
 /* Determine which command format was used and build the MVS */
 /* filename and filename suffix accordingly. */
 /**/

 RootName[0] = 0; /* Set TSO root name to null string*/
 switch (argc)
 { case 1: /* no user arguments */
 NotEnoughError();
 DisplayHelp("N");
 return(SC_SEVERE);
 default:
 /***/
 /* 1 or more user arguments--check further */
 /***/
 /* Convert current user argument to upper case. */
 if (intrc = strupper(uarg, argv[1], PATHLEN))
 return intrc;

Figure 66: DFM DataAgent Sample Part 5 of 25

 if (strcmp(uarg,"QTSO") == 0 |
 strcmp(uarg,"TSO") == 0) {
 if (strcmp(uarg,"QTSO") == 0) {
 /**/
 /* QTSO format */
 /**/
 minparms = MINPQTSO;
 maxparms = MAXPQTSO;
 }
 else {
 /**/
 /* TSO format */
 /**/
 minparms = MINPTSO;
 maxparms = MAXPTSO;
 }
 if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)
 return(intrc);

 /**/
 /* Set special processing flags */
 /**/
 for (i=minparms; i < argc; i++) {
 if (intrc = SpecialOptions(i, argc, argv) > 0)
 return(intrc);
 }
 /**/
 /* Build filename in the format of */
 /* x:fn,agent(dfmqtso,u=userID),pgm(dfmqtso), */
 /* parm(...) */
 /* -- OR -- */
 /* x:fn,agent(dfmxtso,u=userID),pgm(ikjeft01), */
 /* parm(...) */
 /* (Note that MVS will append u=userid) */
 /**/
 if (intrc = strupper(MVSFilename,argv[2],PATHLEN))
 return(intrc);
 fnlen = strlen(MVSFilename); /* Save true filename len */
 if (fnlen > 2 | strncmp(&MVSFilename[1],":",1) != 0) {
 HasFileNameError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }

Figure 67: DFM DataAgent Sample Part 6 of 25

 /**/
 /* Build root filename. */
 /**/
 if (display_filename) {
 if (strcmp(uarg,"QTSO") == 0)
 strcat(MVSFilename,"DFMQTSO.SYSTSPRT");
 else
 strcat(MVSFilename,"DFMXTSO.SYSTSPRT");
 strcpy(RootName,MVSFilename);
 } else {
 dummy_filename = 1;
 strcat(MVSFilename,dummy_name);
 } /* endif */

 /**/
 /* Attach filename suffix. */
 /**/
 if (strcmp(uarg,"QTSO") == 0)
 strcat(MVSFilename,",agent(dfmqtso),parm(");
 else
 strcat(MVSFilename,",agent(dfmxtso),pgm(ikjeft01),parm(");

 /**/
 /* Concatenate parm field */
 /**/
 if (argc >= 4) {
 if (intrc = strupper(usparg, argv[3], USPARMLEN))
 return (intrc);
 if (strcmp(usparg,"DISPLAY") != 0)
 strcat(MVSFilename,argv[3]);
 else if (strcmp(uarg,"QTSO") == 0) {
 /* DFMQTSO requires a parameter field */
 OmitError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }
 }
 strcat(MVSFilename,")"); /* Terminate parameter field */

 } /* End of QTSO/TSO case */

Figure 68: DFM DataAgent Sample Part 7 of 25

 else if (strcmp(uarg,"AGENT") == 0) {
 /**/
 /* AGENT format */
 /**/
 minparms = MINPAGENT;
 maxparms = MAXPAGENT;
 if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)
 return(intrc);

 /**/
 /* Set special processing flags */
 /**/
 for (i=minparms; i < argc; i++) {
 if (intrc = SpecialOptions(i, argc, argv) > 0)
 return(intrc);
 }

 /**/
 /* Build filename in the format of */
 /* x:fn,agent(agentname),pgm(program_name),parm(parms) */
 /**/
 if (intrc = strupper(MVSFilename,argv[2], PATHLEN))
 return(intrc);
 fnlen = strlen(MVSFilename); /* Save true filename len */
 /* Add dummy filename if one wasn't specified */
 if (fnlen == 2 & strncmp(&MVSFilename[1],":",1) == 0) {
 dummy_filename = 1;
 strcat(MVSFilename,dummy_name);
 }

 /* Check the filename format for obvious errors. */
 fnlen = strlen(MVSFilename); /* Save true filename len */
 if (fnlen < 3) {
 NoFileNameError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }

 strcat(MVSFilename,",agent(");
 strcat(MVSFilename,argv[3]);
 strcat(MVSFilename,")");
 /**/
 /* Concatenate optional fields */
 /**/
 if (argc > 4) {
 /**/
 /* Optional parameters are present */
 /**/

Figure 69: DFM DataAgent Sample Part 8 of 25

 /**/
 /* All but DISPLAY are in format of keyword + value. */
 /**/
 data_follows = 0;
 for (i=4; i < argc; i++) {
 if (!data_follows) {
 /* Not data object -- process the keyword. */
 data_follows = 1;
 if (intrc = strupper(usparg, argv[i], USPARMLEN))
 return (intrc);
 if (strcmp(usparg,"PGM") == 0) {
 pgmcnt++;
 strcat(MVSFilename,",pgm(");
 }
 else if (strcmp(usparg,"PARM") == 0) {
 parmcnt++;
 strcat(MVSFilename,",parm(");
 }
 else { /* Unidentified keyword?*/
 /* Make sure it's not a display option */
 if (strcmp(usparg,"DISPLAY") != 0) {
 GeneralError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }
 else
 data_follows = 0; /* No following data */
 } /* End, unidentified kwd*/
 } /* End, even number */
 else {
 /* Process the keyword's data. */
 data_follows = 0;
 strcat(MVSFilename,argv[i]);
 strcat(MVSFilename,")");
 } /* End, data field */
 } /* End of for loop */
 }
 /**/
 /* Ensure no duplicate parameters */
 /**/
 if (pgmcnt > 1 | parmcnt > 1) {
 DuplicateError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }
 /**/
 /* Ensure AGENT is invoked with a PARM */
 /**/
 if (parmcnt == 0)
 strcat(MVSFilename,",parm()");
 } /* End of AGENT */

Figure 70: DFM DataAgent Sample Part 9 of 25

 else if (strcmp(uarg,"START") == 0) {

 /**/
 /* START format */
 /**/
 minparms = MINPSTART;
 maxparms = MAXPSTART;
 if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)
 return(intrc);

 /**/
 /* Build filename in the format of */
 /* x:fn,start(proc,parms) */
 /**/
 if (intrc = strupper(MVSFilename,argv[2],PATHLEN))
 return(intrc);
 fnlen = strlen(MVSFilename);
 if ((fnlen > 2) | (strncmp(&MVSFilename[1],":",1) != 0)) {
 HasFileNameError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }
 dummy_filename = 1;
 strcat(MVSFilename,dummy_name);
 strcat(MVSFilename,",start(");
 strcat(MVSFilename,argv[3]);
 strcat(MVSFilename,")");
 } /* End of START parameter */
 else { /* None of the above */
 /**/
 /* Free-form command otherwise */
 /**/
 /**/
 /* Check for help request. */
 /**/
 if (strncmp(uarg, "?",1) == 0) {
 DisplayHelp(&uarg[0]);
 return(SC_WARNING);
 }

 minparms = MINPFF;
 maxparms = MAXPFF;
 if (intrc = CheckRange(minparms,maxparms,argc, uarg) > 0)
 return(intrc);
 /**/
 /* Set special processing flags */
 /**/
 for (i=minparms; i < argc; i++) {
 if (intrc = SpecialOptions(i, argc, argv) > 0)
 return(intrc);
 }

Figure 71: DFM DataAgent Sample Part 10 of 25

 if (intrc = strupper(MVSFilename,argv[1], PATHLEN))
 return(intrc);
 fnlen = strlen(MVSFilename); /* Save true filename len */
 if (fnlen < 3) {
 NoFileNameError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }

 } /* End of free form parameters */
 }

 /**/
 /* Begin processing the MVS file */
 /**/

 if (debug >= 1) printf
 ("DFMACALL: Processing filename and filename suffix of %s.\n",
 MVSFilename);

 if (display_filename) {
 /**/
 /* Perform unload of records to satisfy display request */
 /**/

 /**/
 /* Allocate a record buffer */
 /**/
 RecALSize = 64000; /* Try to use a 64K Buffer for records*/
 if ((pRecord = (PDDMRECORD)malloc(RecALSize)) == NULL) {
 /* Not enough storage--make one last try for 32K */
 RecALSize = RecALSize / 2; /* Try 32K Buffer */
 if ((pRecord = (PDDMRECORD)malloc(RecALSize)) == NULL) {
 printf("DFMACALL: Out of memory\n");
 return(SC_SEVERE);
 }
 }
 /**/
 /* Unload the first batch of records in rcd number order */
 /**/
 SevCode = 1;
 while (SevCode) {
 SevCode = DDMUnLoadFileFirst
 (MVSFilename, /* FileName */
 &UnLoad, /* UnLoadHandle */
 0UL, /* AccessFlags */
 &DDMMoreDataFlag, /* Flags */
 pRecord, /* RecordBuf */
 RecALSize, /* RecordBufLen */
 (CODEPOINT) RECSEQ, /* UnloadOrder=rcd number */
 &RecCount /* RecCount */
);

Figure 72: DFM DataAgent Sample Part 11 of 25

 if (SevCode > SC_WARNING) {
 printf("DFMACALL: Error on DDMUnLoadFileFirst for %s.\n",
 MVSFilename);
 printf("Severity code = %u\n",SevCode);
 LCodePoint = ReplyMsg();
 /* Retry TSO unload output file if not tried already. */
 if (strcmp(MVSFilename,RootName) != 0 &
 LCodePoint == VALNSPRM) {
 TSO_retry = 1;
 strcpy(MVSFilename,RootName);
 } /* End, TSO retry */
 else { /* Permanent error */
 free(pRecord);
 return(SevCode);
 } /* End, permanent error */
 } /* End of error from unload file first. */
 } /* End of while no error. */

 if (SevCode > SC_WARNING) {
 free(pRecord);
 return(SevCode);
 } /* End, unload first err */

 if (debug >= 2)
 printf ("DDMUnLoadFileFirst: %d records in buffer .\n",
 RecCount);
 if (TSO_retry > 0) {
 printf ("\n** The TSO Output File associated with the error is\
 as follows: **\n");
 printf ("** (Note that its contents may be from a previou\
s run.) **\n");
 }

 DisplayBuffer(RecCount,pRecord);

 /**/
 /* Unload remaining records in record number order. */
 /* When DDMMoreDataFlag is 0x00UL then the file handle is */
 /* invalid and the file will be closed. */
 /**/
 while (DDMMoreDataFlag == 0x01UL)
 {
 SevCode = DDMUnLoadFileNext
 (UnLoad, /* UnLoadHandle */
 0x0000UL, /* Flags */
 &DDMMoreDataFlag, /* UnloadFlags */
 pRecord, /* RecordBuf */
 RecALSize, /* RecordBufLen */
 &RecCount /* RecCount */
);

Figure 73: DFM DataAgent Sample Part 12 of 25

 if (SevCode > SC_WARNING) {
 printf("DFMACALL: Error on DDMUnLoadFileNext for %s.\n",
 MVSFilename);
 printf("Severity code = %u\n",SevCode);
 ReplyMsg();
 free(pRecord);
 return(SevCode);
 }
 if (debug >= 2)
 printf ("DDMUnLoadFileNext: %d records in buffer.\n",
 RecCount);
 DisplayBuffer(RecCount,pRecord);

 } /* End of WHILE loop */
 free(pRecord);

 } else {
 /**/
 /* No display--just open to trigger DataAgent and then close */
 /**/

 /**/
 /* Open the file */
 /**/
 SevCode = DDMOpen
 (MVSFilename, /* FileName */
 &FileHandle, /* FileHandle */
 RELRNBAM, /* AccessMethod */
 DDM_GETAI, /* AccIntList */
 DDM_UPDATERS, /* FileShare */
 NULL, /* EABuf */
 NULL /* reserved */
);
 if (SevCode != SC_NO_ERROR)
 {
 if (dummy_filename == 0)
 {
 printf("Error opening file %s\n",MVSFilename);
 printf("Severity code = %u\n",SevCode);
 }
 ReplyMsg();
 return(SevCode);

 }

Figure 74: DFM DataAgent Sample Part 13 of 25

 /**/
 /* Close the file */
 /**/
 SevCode = DDMClose
 (FileHandle /* FileHandle */
);

 if (SevCode != SC_NO_ERROR)
 {
 if (dummy_filename == 0)
 {
 printf("Error closing file %s\n",MVSFilename);
 printf("Severity code = %u\n",SevCode);
 }
 ReplyMsg();
 return(SevCode);
 }
 }

 return(SC_NO_ERROR);

} /* End--sample main */

/**
**************************** ReplyMsg ***********************************

* Process the reply message if there is a Severity Code other than
* SC_NO_ERROR;
*
***/
CODEPOINT ReplyMsg(VOID)
{
 static BYTE pRpyMsgBuf[RPYMSBFLN];

 APIRET rc;
 CODEPOINT CodePoint;
 PDDMOBJECT pReplyObject;
 USHORT index;

Figure 75: DFM DataAgent Sample Part 14 of 25

 /*---
 -- The following table contains the count for the number of parameters
 -- expected for each reply message (1st column), and it also contains
 -- the expanded error messages
 --
 -- The first message in the table, KEYUDIRM, has the lowest
 -- code point value. It is also the first message in a block of
 -- message code points that ends with RECNAVRM.
 --
 -- The next block of message code points (in ascending code point order)
 -- begins with OS2ERRRM and ends with FILERRRM.
 -- The low-order byte is used as the index into this block.
 --*/
 static struct
 { USHORT Count;
 BYTE msg[52];
 } ErrorMsgBuffer[] =
 { 6, "Key Update Not Allowed by Different Index \0",
 0, " \0",
 0, " \0",
 0, "Default Record Error \0",
 5, "Cursor Not Selecting a Record Position \0",
 7, "Invalid Data Record \0",
 3, "Duplicate File Name \0",
 8, "Duplicate Key Different Index \0",
 7, "Duplicate Key Same Index \0",
 7, "Duplicate Record Number \0",
 3, "End of File \0",
 7, "File is Full \0",
 4, "File in Use \0",
 3, "File Not Found \0",
 6, "File Space Not Available \0",
 0, " \0",
 0, " \0",
 3, "Invalid File Name \0",
 0, " \0",
 0, " \0",
 7, "Record Length Mismatch \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 2, "Not Authorized to Function \0",
 0, " \0",
 4, "File Temporarily Not Available \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",

Figure 76: DFM DataAgent Sample Part 15 of 25

 7, "Record Number Out of Bounds \0",
 5, "Record Not Found \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 3, "Invalid Key Length \0",
 0, " \0",
 0, " \0",
 3, "Not Authorized to Access Method \0",
 0, "Invalid Access Method \0",
 3, "Permanent Agent Error \0",
 6, "Resource Limits Reached on Target System \0",
 3, "Invalid Base File Name \0",
 0, " \0",
 0, " \0",
 2, "Not Authorized to Directory \0",
 0, "Management Class Conflict \0",
 0, "Storage Class Conflict \0",
 3, "Existing Condition \0",
 4, "Not Authorized to File \0",
 6, "Invalid Request \0",
 4, "Invalid Key Definition \0",
 0, " \0",
 5, "Key Update Not Allowed by Same Index \0",
 8, "Invalid Key Value \0",
 0, " \0",
 0, " \0",
 3, "Open Exclusive by Same User \0",
 4, "Concurrent Open Exceeds Maximum \0",
 4, "Conversational Protocol Error \0",
 0, " \0",
 0, " \0",
 0, " \0",
 7, "Record Damaged \0",
 7, "Record in Use \0",
 0, " \0",
 5, "Data Stream Syntax Error \0",
 7, "Update Cursor Error \0",
 5, "No Update Intent on Record \0",
 3, "Invalid New File Name \0",
 3, "Function Not Supported \0",
 3, "Parameter Not Supported \0",
 4, "Parameter Value Not Supported \0",
 4, "Object Not Supported \0",
 5, "Command Check \0",
 0, " \0",

Figure 77: DFM DataAgent Sample Part 16 of 25

 0, " \0",
 2, "File Handle Not Found \0",
 3, "Directory Full \0",
 3, "Record Inactive \0",
 7, "File Damaged \0",
 4, "Load Records Count Mismatch \0",
 3, "Not Authorized to Open Intent for Named File \0",
 0, " \0",
 3, "File Closed with Damage \0",
 2, "Target Not Supported \0",
 5, "Key Value Modified after Cursor was Last Set \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, "Access Intent List Error \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 5, "Record Not Available \0",

 /************ START OF SECOND CODE POINT RANGE *************/
 0, "OS/2 Error \0",
 0, "Data Description File Not Found \0",
 0, "Conversion Table Not Found \0",
 2, "Translation Error \0",
 0, " \0",
 2, "Invalid Flag \0",
 0, " \0",
 2, "Communications Error \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 0, " \0",
 2, "Resource Limit Reached in OS/2 V2.0 Source System \0",
 2, "Field Length Error \0",
 2, "Address Error \0",
 0, " \0",
 2, "Function Continuation Error \0",
 0, " \0",
 2, "File Error \0"
 };

Figure 78: DFM DataAgent Sample Part 17 of 25

 /*---
 -- For each reply message available, retrieve and display it.
 --*/
 do
 { /*--
 -- Get the reply message
 ---*/
 rc = DDMGetReplyMessage(pRpyMsgBuf, (ULONG)RPYMSBFLN, (ULONG)1);

 switch (rc)
 { case SC_NO_ERROR: /* All reply messages have been received */
 case SC_WARNING: /* There are more reply messages to be received*/
 break;
 case SC_ERROR:
 printf(" ReplyMsg: reply message buffer is too small -\n");
 printf(" enlarge and recompile ...\n");
 return(rc);
 break;
 case SC_SEVERE:
 printf(" ReplyMsg: Warning: A reply message was requested,\n");
 printf(" but there are none available ...\n");
 return(rc);
 break;
 case SC_ACCESSDAMAGE:
 printf(" ReplyMsg: Error: An invalid reply message buffer\n");
 printf(" address was specified ...\n");
 return(rc);
 break;
 case SC_PERMDAMAGE:
 printf(" ReplyMsg: Severe Error: An unarchitected reply message\n");
 printf(" object was encountered ...\n");
 return(rc);
 break;
 default:
 printf(" ReplyMsg: Unknown return code from DDMGetReplyMessage\n");
 return(rc);
 break;
 } /* endswitch */

Figure 79: DFM DataAgent Sample Part 18 of 25

 /*--
 -- Get the reply message
 ---*/
 pReplyObject = (PDDMOBJECT)pRpyMsgBuf;

 CodePoint = pReplyObject->cpObject; /* get code point */

 /* reset pointer to first parm base */
 pReplyObject = (PDDMOBJECT)((PBYTE)pReplyObject
 + (sizeof(CODEPOINT)
 + sizeof(OBJLENGTH))
);

 /*--
 -- Calculate the index into the parameter/msg table based on
 -- the codepoint.
 ---*/
 if (CodePoint <= RECNAVRM) /* if code point in first block */
 index = (USHORT)(CodePoint - KEYUDIRM);
 else /* code point in second block */
 index = (USHORT)
 ((RECNAVRM - KEYUDIRM + 1) /* number of entries in
 first block */
 + (CodePoint % 0x0100UL) /* index into second block */
);

 /* If the index indicates "file not found" and a dummy filename */
 /* is being used, ignore the error. */
 if (index == 13 & dummy_filename == 1)
 return(SC_NO_ERROR);

 /*--
 -- Begin dissecting the reply message buffer
 ---*/
 if (ErrorMsgBuffer[index].Count > 0)
 { printf("RPYMSG: %s\n",ErrorMsgBuffer[index].msg);
 DumpBuffer(pReplyObject, ErrorMsgBuffer[index].Count);
 printf("\n");
 }

 } while (rc == SC_WARNING); /* enddo */
 return(CodePoint);

} /* ReplyMsg */

Figure 80: DFM DataAgent Sample Part 19 of 25

/**
************************** DumpBuffer ***********************************

*
* For each object in the reply message buffer, print out its contents.
*
***/
VOID DumpBuffer(PDDMOBJECT pAttribute,
 USHORT Count)
{
 int i; /* Local loop counter */
 do
 { if (pAttribute->cbObject == (sizeof(CODEPOINT) + sizeof(OBJLENGTH)))
 { printf("Null object returned = %x\n",pAttribute->cbObject);
 pAttribute->cpObject = 0;
 }
 else
 { switch(pAttribute->cpObject)
 { case ACCMTHCL: /* Access Method Class */
 printf("ACCMTHCL = 0x%X\n", *(PCODEPOINT)(pAttribute-
>pData));
 break;
 case BASFILNM: /* Base File Name */
 printf("BASFILNM = %s\n", pAttribute->pData);
 break;
 case CODPNT: /* Code Point */
 printf("CODPNT = 0x%X\n", *(PCODEPOINT)(pAttribute-
>pData));
 break;
 case CSRPOSST: /* Cursor Position Status */
 printf("CSRPOSST = 0x%hX\n", *(PBYTE)(pAttribute-
>pData));
 break;
 case DTALCKST: /* Data Lock Status */
 printf("DTALCKST = 0x%hX\n", *(PBYTE)(pAttribute-
>pData));
 break;
 case ERRFILNM: /* Error File Name */
 printf("ERRFILNM = %s\n", pAttribute->pData);
 break;
 case FILNAM: /* File Name */
 printf("FILNAM = %s\n", pAttribute->pData);
 break;
 case KEYDEFCD: /* Key Definition Error Code */
 printf("KEYDEFCD = 0x%hX\n", *(PBYTE)(pAttribute-
>pData));
 break;
 case MAXOPN: /* Maximum Number of File Extents
 Concurrent Opens Allowed */
 printf("MAXOPN = %d\n", *(PUSHORT)(pAttribute->pData));
 break;

Figure 81: DFM DataAgent Sample Part 20 of 25

 case NEWFILNM: /* New File Name */
 printf("NEWFILNM = %s\n", pAttribute->pData);
 break;
 case PRCCNVCD: /* Conversational Protocol Error Code */
 printf("PRCCNVCD = 0x%hX\n", *(PBYTE)(pAttribute-
>pData));
 break;
 case RECCNT: /* Record Count */
 printf("RECCNT = %ld\n", *(PULONG)(pAttribute->pData));
 break;
 case RECNBR: /* Record Number */
 printf("RECNBR = %ld\n", *(PRECNUM)(pAttribute->pData));
 break;
 case SRVDGN: { /* Server Diagnostic Information */
 printf("SRVDGN = 0x\n");
 for (i=1; i < (pAttribute->cbObject-5); i++) /* 2 byte len, 2 byte codept*/
 { if (i % 16 ==0)
 printf("%02X\n", *(PBYTE)(pAttribute->pData+i-
1));
 else
 if (i % 4 ==0)
 printf("%02X ", *(PBYTE)(pAttribute->pData+i-
1));
 else
 printf("%02X", *(PBYTE)(pAttribute->pData+i-1));
 }
 }
 break;
 case SVRCOD: /* Severity Code */
 printf("SVRCOD = 0x%X\n", *(PCODEPOINT)(pAttribute-
>pData));
 break;
 case SYNERRCD: /* Syntax Error Code */
 printf("SYNERRCD = 0x%hX\n", *(PBYTE)(pAttribute-
>pData));
 break;
 default:
 printf("Unknown code point - 0x%X\n",
 *(PCODEPOINT)(pAttribute->pData));
 break;
 } /* endswitch */
 } /* endif */

 /* go to next object */
 pAttribute = (PDDMOBJECT)((PBYTE)pAttribute + pAttribute->cbObject);

 } while(--Count > 0);

} /* DumpBuffer */

Figure 82: DFM DataAgent Sample Part 21 of 25

/**
**************************** Error Routines ******************************
**/
VOID GeneralError()
{
 printf("DFMACALL: Incorrect command line syntax.\n");
} /* GeneralError */

VOID OmitError()
{
 printf("DFMACALL: A required parameter was omitted.\n");
}

VOID TooManyError()
{
 printf("DFMACALL: Too many parameters were on the command line.\n");
}

VOID NotEnoughError()
{
 printf("DFMACALL: Not enough parameters were on the command line.\n");
}

VOID HasFileNameError()
{
 printf("DFMACALL: Filename is not allowed for QTSO, TSO, or START.\n");
}

VOID NoFileNameError()
{
 printf("DFMACALL: A filename must be specified.\n");
}

VOID ValueError(char *value)
{
 printf("DFMACALL: Incorrect parameter value %s.\n",value);
}

VOID ParmLenError(char *value)
{
 printf("DFMACALL: Parameter %s is too long.\n",value);
}

int strupper(char *oarg, char *iarg, int bufflen)
{
 /* Convert string to upper case. */
 int i;
 if (strlen(iarg) > bufflen) {
 ParmLenError(iarg);
 return(SC_SEVERE);
 }

Figure 83: DFM DataAgent Sample Part 22 of 25

 for (i=0; i < strlen(iarg); i++) {
 oarg[i] = toupper(iarg[i]);
 }
 oarg[i] = 0;
 return (0);

}

VOID DuplicateError()
{
 printf("DFMACALL: One or more parameters were duplicated.\n");
}

VOID DisplayBuffer(ULONG count, PDDMRECORD pCurrentRecord)
{
 /* Display a buffer full of records */
 ULONG i; /* record counter */
 int j; /* index to character in record */
 int cRecLen; /* current record length */
 UCHAR c; /* current converted character */
 UCHAR savechar; /* savearea for trailing character */

 for (i=1; i <= count; i++) {
 cRecLen = pCurrentRecord->cbRecord - sizeof(pCurrentRecord->cbRecord)
 - sizeof(pCurrentRecord->cpRecord);
 /***/
 /* Replace all instances of non-printable characters, */
 /***/
 /* Make sure the string is printable and */
 /* make sure that there is no 0 in the middle of string. */
 for (j=0; j < cRecLen; j++) {
 if (!(c = pCurrentRecord->pRecord[j]))
 pCurrentRecord->pRecord[j] = ' '; /* Replace x00 with blank */
 else if (!isprint(c))
 pCurrentRecord->pRecord[j] = '.'; /* Make nonprintable a "." */
 } /* End of for j= loop */
 savechar = pCurrentRecord->pRecord[cRecLen]; /* save trailing char */
 pCurrentRecord->pRecord[cRecLen] = '\0';

 if (debug >= 5) {
 display_counter++;
 printf ("Displaying record %d with length %d:\n",
 display_counter,cRecLen);
 }
 printf ("%s\n",pCurrentRecord->pRecord);
 pCurrentRecord->pRecord[cRecLen] = savechar; /* restore trailing */
 pCurrentRecord = (PDDMRECORD) (pCurrentRecord->pRecord + cRecLen);
 }

}

Figure 84: DFM DataAgent Sample Part 23 of 25

 SpecialOptions(int index, int argc, char *argv[])
{
 CHAR uarg[PARMLEN]; /* Upper case argument */
 /* Check for special processing options. */
 if (intrc = strupper(uarg, argv[index], PARMLEN))
 return(intrc);
 if (strcmp(uarg,"DISPLAY") == 0)
 display_filename = 1;

 return(0);
} /* End of SpecialOptions */

 CheckRange(int minparms, int maxparms, int argc, char uarg[PARMLEN])
{
 /* Ensure number of parameters is reasonable for the command */

 /**/
 /* Ensure enough parameters */
 /**/
 if (argc < minparms) {
 NotEnoughError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }

 /**/
 /* Ensure no leftover parameters */
 /**/
 if (argc > maxparms) {
 TooManyError();
 DisplayHelp(&uarg[0]);
 return(SC_SEVERE);
 }

return(0);

}

Figure 85: DFM DataAgent Sample Part 24 of 25

/**
**************************** DisplayHelp *****************************

* Display the correct syntax for invoking this function.
*
**/
VOID DisplayHelp(char *fullhelp)
{
if (strncmp(fullhelp,"?",1) == 0) {
 /* Print full help text. */
 printf("Correct syntax: \n\n");
 printf(" DFMACALL QTSO driveletter: TSOcommandline [DISPLAY] \n");
 printf(" DFMACALL TSO driveletter: [TSOcommandline] [DISPLAY]
\n");
 printf(" DFMACALL AGENT driveletter:[filename]
MVSproc[,proc_parms] \n");
 printf(" [PGM prog_name] [PARM prog_parms]
[DISPLAY] \n");
 printf(" DFMACALL START driveletter: MVSproc[,proc_parms] \n");
 printf(" DFMACALL driveletter:filename[,filename_suffix]
[DISPLAY] \n\n");
 printf(" Examples: \n\n");
 printf(" dfmacall qtso r: listc display \n");
 printf(" dfmacall tso r: display \n");
 printf(" dfmacall agent r:ibmuser.a.b dfmxagnt \n");
 printf(" dfmacall agent r:ibmuser.a.b dfmxtso \n");
 printf(" pgm ikjeft01 parm listc \n");
 printf(" dfmacall start r: dfmx0001,dfminit=iefbr14 \n");
 printf(" dfmacall r:ibmuser.a.b,agent(dfmxagnt),parm(hello) \n");
 printf(" dfmacall r:ibmuser.a.b,agent(dfmx0001),pgm(dfmxagnt)\n\n");
}
else {
 /* Print clue for getting correct help text. */
 printf("DFMACALL: Enter DFMACALL ? to get the correct command syntax. \n\n");
}
}

Figure 86: DFM DataAgent Sample Part 25 of 25

96 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix K. DDM File Attributes

Table 2 on page 97 summarizes the DDM file attributes by DDM file class.

Table 2: DDM File Attributes.

Attribute Description Chg PDSE
Member
(SEQFIL)

PDSE
Member
(STRFIL)

SAM ESD
S

KSDS/
VRRDS

RRDS

ACCMTHLS Access method list NO YES YES YES YES YES YES

DELCP Delete capable NO YES … YES YES YES YES

DFTREC Default record NO YES … NO NO NO NO

DTACLSNM Data class name NO YES YES YES YES YES YES

DTAFMT Data format YES … YES … … … …

EOFNBR End of file number NO YES YES NO YES YES YES

EOFOFF End of file offset NO … YES … … … …

FILEBYTCN File byte count NO YES YES NO NO NO NO

FILCHGDT File change date YES YES YES YES YES YES YES

FILCLS File class NO YES YES YES YES YES YES

FILCRTDT File creation date NO YES YES YES YES YES YES

FILEXNCN File extent count NO NO NO NO NO NO NO

FILEXNSZ File extent size NO YES YES NO NO NO YES

FILEXPDT File expiration date YES YES YES YES YES YES YES

FILHDD File hidden ME
M

YES YES YES YES YES YES

FILINISZ Initial file size NO YES YES NO NO NO YES

FILMAXEX Maximum number
extents

NO YES YES YES YES YES YES

FILNAM File name NO YES YES YES YES YES YES

FILOPNLO Open lock options NO YES NO NO NO NO …

FILPRT File protected YES YES YES YES YES YES YES

FILSIZ File size NO YES … NO … … YES

FILSYS System file ME
M

YES YES YES YES YES YES

GETCP Get capable ME
M

YES YES YES YES YES YES

INSCP Insert capable ME
M

YES … YES YES YES YES

KEYDEF Key definition NO … … … … YES/ … …

© Copyright IBM Corp. 1993, 2017 97

Table 2: DDM File Attributes. (continued)

Attribute Description Chg PDSE
Member
(SEQFIL)

PDSE
Member
(STRFIL)

SAM ESD
S

KSDS/
VRRDS

RRDS

KEYDUPCP Duplicate key
capable

NO … … … … YES/ … …

LSTACCDT Last access date NO NO NO YES YES YES YES

LSTARCDT Last archive date NO YES YES NO NO NO NO

MGMCLSNM Management class
name

DS YES YES YES YES YES YES

MODCP Modify capable ME
M

YES YES YES YES YES YES

RECLEN Record length NO YES … YES YES YES YES

RECLENCL Record length class NO YES … YES YES YES YES

RTNCLS Retention class NO YES YES YES YES YES YES

SHDEXS Shadow exists NO YES YES YES YES YES YES

STGCLSNM Storage class name DS YES YES YES YES YES YES

STRSIZ Stream size YES … NO … … … …

TITLE Title ME
M

YES YES NO NO NO NO

Legend for Chg column:
YES

Attribute value can be changed with the CHGFAT command for a full access data set.
NO

Attribute value cannot be changed with the CHGFAT command.
DS

Attribute value can be changed for data sets only with the CHGFAT command.
MEM

Attribute value can be changed for PDSE members only with the CHGFAT command.

Legend for Data Set/Member columns:
YES

Supported; that is, an attribute value is returned when requested on a LSTFAT command.
NO

Not supported; that is, no attribute value is returned when requested on a LSTFAT command.
…

Does not apply to any of the possible file classes for this data set member.

98 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix L. Application Programming Considerations

This appendix contains programming considerations relevant to a DDM client record and stream file
access. When programming with these application programming interfaces (APIs), you need to consider
Distributed FileManager file creation support, access command support, access restrictions, and logon
mode requirements.

Distributed FileManager Implementation
DFM provides a subset of DDM access methods, file types, and commands. In some cases, DFM does not
support certain record access and stream file API commands or command parameters.

DDM Record Access File Creation
DFM creates record-oriented files based on DDMCreateRecFile command parameter settings. The
following are optional parameter settings which govern data set creation within the indicated FileClass.
Also provided are some mandatory flag and parameter settings for supported DFM functions.

FileClass SEQFIL

Results in the creation of a SAM data set, a PDSE member, a PDS member, or a VSAM RRDS or VRRDS.

• The type of data set created depends on these parameters:

– If the FileName parameter includes a member name, and the Delete Capability parameter is off, a
PDSE member or PDS member is created. (If the data set does not exist, a PDSE is created first, and
then the member is created.)

– If the FileName does not include a member name, and Delete Capability is on, a VSAM RRDS or
VRRDS is created.

– If the FileName does not include a member name, and Delete Capability is off, a SAM data set is
created.

• FileClass SEQFIL CreateFlags mandatory settings are:

Set off the following bit flag: DDM_TMPFIL

FileClass KEYFIL

Results in the creation of a VSAM KSDS data set.

• FileClass KEYFIL CreateFlags mandatory settings are:

Set off the following bit flags: DDM_TMPFIL, DDM_ALDUPKEY
• In FileClass KEYFIL, for the parameters DftRec and DftRecOp, the only valid value is NIL.

FileClass DIRFIL

Results in the creation of a VSAM RRDS or VRRDS data set.

• The type of data set created is determined by the following:

– A RecLenCls value of RECFIX results in a RRDS data set
– A RecLenCls value of RECIVL or RECVAR results in a VRRDS data set

• FileClass DIRFIL CreateFlags mandatory settings are:

Set off the following bit flag: DDM_TMPFIL

Additional Considerations

You should also be aware that:

© Copyright IBM Corp. 1993, 2017 99

• If you do not specify InitFileSiz for DDMCreateRecFile, the file size is determined by your ACS routines.

Stream File Creation
You can use the DDM Stream access method to create stream files in SAM data sets or PDSE members.
The type of data set created depends on:

• If the FileName parameter does not include a member name, a SAM data set is created.
• If the FileName includes a member name, a PDSE member is created. (If the data set does not exist, a

PDSE is created first, and then the member is created.)

You should also be aware that:

• DFM uses a tunable parameter in DFM00 called STREAM_LRECL for record length and RECFM = V to
create new SAM data sets or PDSE data sets. These attributes override LRECL and RECFM of the SMS
data class defaulted by the ACS routine.

File Access Commands Supported by Distributed FileManager
Only commands supported by the following DDM access methods can be issued using DFM:
Access Method

Description
RELRNBAM

Relative by record number access method
RNDRNBAM

Random by record number access method
CMBRNBAM

Combined record number access method
RELKEYAM

Relative by key access method
RNDKEYAM

Random by key access method
CMBKEYAM

Combined key access method
STRAM

Stream access method

Sequential Files

Table 3 on page 100 lists the DDM access method commands supported for DFM sequential files.

Table 3: DDM Access Method Commands Supported for Distributed FileManager Sequential Files.

Access Commands RELRNBAM RNDRNBAM CMBRNBAM STRAM

CHGEOF YES*

CLOSE YES YES YES YES

DELREC YES# YES# YES# ...

FRCBFF YES YES YES YES

GETREC YES YES YES ...

GETSTR YES

INSRECEF YES YES YES ...

100 z/OS: DFSMS Distributed FileManager Guide and Reference

Table 3: DDM Access Method Commands Supported for Distributed FileManager Sequential Files.
(continued)

Access Commands RELRNBAM RNDRNBAM CMBRNBAM STRAM

INSRECNB ... YES+ YES+ ...

LCKSTR YES

MODREC YES YES YES ...

OPEN YES YES YES YES

PUTSTR YES*

SETBOF YES YES YES ...

SETEOF YES@ YES@ YES@ ...

SETFRS YES YES YES ...

SETLST YES@ YES@ YES@ ...

YES ... YES ...

... YES YES ...

SETNXT YES ... YES ...

YES ... YES ...

YES ... YES ...

NO YES YES ...

UNLIMPLK YES YES YES ...

UNLSTR Yes

Legend:
YES

The command is supported.
NO

The command is not supported.
...

The command does not apply to the access method.
#

DELREC is only supported for RRDSs and VRRDSs.
@

SETEOF and SETLST are not supported for PDS members.
+

INSRECNB returns “duplicate record number” for PDSE members and PDS members.
*

DFM limits stream access to read-only support for VRRDS and RRDS data sets. All stream access to
non-reusable VSAM data sets is read-only.

Direct Files

Table 4 on page 102 lists the DDM access method commands supported for DFM direct files.

Application Programming Considerations 101

Table 4: DDM Access Method Commands Supported for Distributed FileManager Direct Files.

Access Commands RELRNBAM RNDRNBAM CMBRNBAM STRAM

CHGEOF YES*

CLOSE YES YES YES YES

DELREC YES YES YES ...

FRCBFF YES YES YES YES

GETREC YES YES YES ...

GETSTR YES

INSRECEF YES YES YES ...

INSRECNB ... YES YES ...

LCKSTR YES

MODREC YES YES YES ...

OPEN YES YES YES YES

PUTSTR YES*

SETBOF YES YES YES ...

SETEOF YES YES YES ...

SETFRS YES YES YES ...

SETLST YES YES YES ...

YES ... YES ...

... YES YES ...

SETNXT YES ... YES ...

YES ... YES ...

YES ... YES ...

NO YES YES ...

YES YES YES ...

UNLSTR YES

Legend:
YES

The command is supported.
NO

The command is not supported.
...

The command does not apply to the access method.
*

DFM limits stream access to read-only support for RRDSs and VRRDSs. All stream access to non-
reusable VSAM data sets is read-only.

Keyed Files

Table 5 on page 103 lists the DDM access method commands supported for DFM keyed files.

102 z/OS: DFSMS Distributed FileManager Guide and Reference

Table 5: DDM Access Method Commands Supported for Distributed FileManager Keyed Files.

Access Commands RELKEYAM RNDKEYAM CMBKEYAM STRAM

CHGEOF YES*

CLOSE YES YES YES YES

DELREC YES# YES# YES# ...

FRCBFF YES YES YES YES

GETREC YES YES YES ...

GETSTR YES

INSRECKY YES YES YES ...

INSRECNB NO NO NO ...

LCKSTR YES

MODREC YES YES YES ...

OPEN YES YES YES YES

PUTSTR YES*

SETBOF YES YES YES ...

SETEOF YES YES YES ...

SETKEY YES@ YES YES ...

SETKEYFR YES YES YES ...

SETKEYLM YES ... YES ...

SETKEYLS YES YES YES ...

SETKEYNX YES ... YES ...

SETKEYPR YES ... YES ...

SETNXTKE YES ... YES ...

YES YES YES ...

YES YES YES ...

UNLSTR YES

Application Programming Considerations 103

Table 5: DDM Access Method Commands Supported for Distributed FileManager Keyed Files. (continued)

Access Commands RELKEYAM RNDKEYAM CMBKEYAM STRAM

Legend:
Yes

The command is supported.
No

The command is not supported.
...

The command does not apply to the access method.
*

DFM limits stream access to read-only support for keyed files.
#

DELREC is only supported for KSDSs.
@

RELKEYAM is promoted to CMBKEYAM.

Stream Files

Table 6 on page 104 lists the DDM access method commands supported for DFM stream files.

Table 6: DDM Access Method Commands Supported for Distributed FileManager Stream Files.

Access Commands STRAM

CHGEOF YES

CLOSE YES

FRCBFF YES

GETSTR YES

LCKSTR YES

OPEN YES

PUTSTR YES

UNLSTR YES

Legend:
YES

The command is supported.

DDM Record Access Restrictions
Restrictions for applications doing record access to DFM are:

• DFM does not support the following functions for accessing multivolume data sets:

– Backward processing functions: DDMSetMinus and DDMSetPrevious
– Direct positioning functions: DDMSetBOF, DDMSetEOF, DDMSetFirst, and DDMSetLast
– DDMInsertRecEOF function (An alternative is to use the DDMLoadFileFirst function to write records to

an empty file or to extend the file.)

104 z/OS: DFSMS Distributed FileManager Guide and Reference

– Under some conditions, DDMGetRec and DDMModifyRec functions for accessing records that span
physical volumes

The equivalent DDM commands for these DDM record access functions are SETPRV, SETMNS, SETBOF,
SETEOF, SETFRS, SETLST, INSRECEF GETREC and MODREC. The TRGNSPRM reply message is returned
if these commands are used to access multivolume data sets.

• The DDMOpen AccIntList includes DDM_MODAI, DDM_INSAI, and DDM_GETAI bit flags. You must
explicitly state all your access intents for the duration of the file being open under control of that
DDMOpen command.

There is not a more powerful access intent which implicitly permits another less powerful access. For
example, if you specify DDM_MODAI but not DDM_GETAI and then attempt to retrieve a record, you will
receive an error reply message.

• The following are other DFM access restrictions:

– For the DDMModifyRec command, the AccessFlags DDM_INHMODKY bit flag must be set on.
– For DDMUnLoadFileFirst, you must explicitly specify UnloadOrder KEYORD for KSDS.
– For DDMSetKey, the AccessFlag DDM_HLDCSR bit flag must be set off.
– DDMSetLast with the AccessFlag DDM_RECNBRFB bit flag set on for ESDS and partitioned sequential

data sets returns the special value of -1 for the record number feedback. This indicates that the
number is not known.

• If you are accessing KSDSs or AIFs, you can only use DDM keyed access method commands. You can
only access these records by key, not by record number.

• If you are accessing a PDS member:

– Only sequential load (using INSRECEF or LODRECF) is supported; random load (by record number) is
not supported.

– These DDM access commands are not supported: DELREC, INRECNB, SETEOF, and SETLST.

Stream File API Restrictions
Stream file API restrictions, from DDM clients:

A DDM client editor might report a critical error when you create a remote stream file using DFM. The
file is, however, actually created and can subsequently be accessed without editor error messages.

Logon Mode Requirements
The IBM i5/OS system and DDM clients have the following logon mode requirements:

• It requires a logon mode named QPCSUPP in order to perform authorization checking.
• It only supports one logon mode name specification to be used for all target systems.

Application Programming Considerations 105

• If you do not successfully place a logon mode table entry named QPCSUPP in the z/OS VTAM logon
mode table concatenation for your z/OS APPC APPL, you will receive error messages, see Figure 87 on
page 106, on your z/OS console:

 IST663I BFINIT REQUEST FROM DFMNCP (my NCP major node) FAILED,
SENSE=...
 IST664I REAL OLU=PELNET01.PS2ILU1 REAL DLU=PELNET01.DFMILU1
 IST889I SID=...
 IST264I REQUIRED LOGMODE NAME QPCSUPP UNDEFINED
 IST314I END
 IST663I BFTERM REQUEST FROM DFMNCP RECEIVED, SENSE=...
 IST664I (same as before)
 IST889I SID=...
 IST891I PELNET01.VTAMF GENERATED FAILURE NOTIFICATION
 IST893I ORIGINAL FAILING REQUEST IS BIND
 IST314I END

Figure 87: Error Messages

106 z/OS: DFSMS Distributed FileManager Guide and Reference

Appendix M. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed email message
to mhvrcfs@us.ibm.com.

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

© Copyright IBM Corp. 1993, 2017 107

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
mailto:mhvrcfs@us.ibm.com

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

108 z/OS: DFSMS Distributed FileManager Guide and Reference

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Accessibility 109

110 z/OS: DFSMS Distributed FileManager Guide and Reference

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 1993, 2017 111

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

112 z/OS: DFSMS Distributed FileManager Guide and Reference

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Notices 113

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Programming interface information
This publication documents intended Programming Interface that allow the customer to write programs
to obtain services of DFSMS.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked
terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these
symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information
was published. Such trademarks may also be registered or common law trademarks in other countries. A
current list of IBM trademarks is available on the Web at Copyright and Trademark information
(www.ibm.com/legal/copytrade.shtml).

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

114 z/OS: DFSMS Distributed FileManager Guide and Reference

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines technical terms and abbreviations used in DFSMShsm documentation. If you do not
find the term you are looking for, refer to the index of the appropriate DFSMShsm manual.

This glossary includes terms and definitions from:

• The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute (ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions
are identified by the symbol (A) after the definition.

• The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft international standards, committee drafts, and working
papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition,
indicating that final agreement has not yet been reached among the participating National Bodies of
SC1.

access method
(1) A mainframe data management routine that moves data between storage and an I/O device in
response to requests made by a program. (2) The part of the distributed data management
architecture which accepts commands to access and process the records of a file.

ACS
See Automatic class selection (ACS).

Advanced Program-to-Program Communications (APPC)
An implementation of the Systems Network Architecture (SNA) logical unit (LU) 6.2 protocol that
allows interconnected systems to communicate and share the processing of programs.

agent
Manages the parsing and routing of DDM commands and replies.

AIF
See Alternate index file.

AIX
Advanced Interactive Executive

alias
An alternative name for an ICF user catalog, a non-VSAM file, or a member of a partitioned data set
(PDS) or PDSE.

alternate index file
A file that supports keyed forms of access to the records of a base file.

API
See application programming interface (API).

APPC
See Advanced Program-to-Program Communications (APPC).

APPC/MVS
In the z/OS operating system, a session environment that supports LU 6.2 transaction scheduling and
communications. The z/OS implementation of APPC.

application programming interface (API)
A formally defined programming language interface between an IBM system control program or a
licensed program and the user of a program.

architecture
A set of defined terms and rules used as instructions to build products.

© Copyright IBM Corp. 1993, 2017 115

ascending key sequence
Specifies that the records of a file are in ascending key sequence. If the key class is BYTSTRDR (byte
string), the collating sequence is a simple binary sequence with X'00' as the lowest value and X'FF' as
the highest value.

ASCH
The APPC/MVS scheduler.

ASCII
American National Standard Code for Information Interchange

ASID
Address space identifier

associated DDM attributes
Associated DDM attributes are defined in DDM. Examples of associated DDM attributes are file size,
lock options or end-of-file offset for byte-stream files. Associated DDM attributes are not necessarily
exclusive to DDM, but can be common to other applications that access the same data sets.

automatic class selection (ACS)
A mechanism for assigning Storage Management Subsystem classes and storage groups to data sets.

automatic class selection (ACS) routine
A procedural set of ACS language statements. Based on a set of input variables, the ACS language
statements generate the name of a predefined SMS class, or a list of names of predefined storage
groups, for a data set.

backup
The process of creating a copy of a data set or object to be used in case of accidental loss.

base data set
Data set or file stored on z/OS, in contrast to the view of the file as seen by the workstation. Is also
used to refer to the VSAM ESDS or KSDS upon which an alternate index is built.

BCP
Base control program

BDAM
Basic direct access method

BSAM
Basic sequential access method

byte
The amount of storage required to represent one character; the basic unit of data.

byte stream
A simple sequence of bytes stored in a stream file.

C language
A language used to develop software applications in compact, efficient code that can be run on
different types of computers with minimal change.

CCSID
Coded character set identifier

CD
Change directory

CDRA
Character Data Representation Architecture

CL
Control language

client
(1) A user. (2) A consumer of resources or services. (3) A functional unit that receives shared services
from a server. (4) A system that is dependent on a server to provide it with programs or access to
programs. (5) On a network, the computer requesting services or data from another computer.

116 z/OS: DFSMS Distributed FileManager Guide and Reference

client-server
(1) In TCP/IP, the model of interaction in distributed data processing in which a program at one site
sends a request to a program at another site and waits for a response. The requesting program is
called a client; the answering program is called a server. (2) A model of computer interaction in which
a server provides resources for other systems on a network, and a client accesses those resources.
See also client, server.

code point
Specifies the data representation of a dictionary code point. Code points are hexadecimal aliases for
the named terms of DDM architecture. Code points are used to reduce the number of bytes required to
identify the class of an object in memory and in data streams.

command
A message sent to an object requesting that the object carry out one of its operations.

communications manager
Manages the use of the system's communication facilities.

conversation
In Advanced Program-to-Program Communications (APPC), a connection between two transaction
programs over a logical unit-logical unit (LU-LU) session that allows them to communicate with each
other while processing a transaction.

conversational transaction
In Advanced Program-to-Program Communications (APPC), two or more programs communicating
using the services of logical units (LUs).

cursor
A cursor is a displayed symbol that acts as a marker to help the user locate a point in text, in a system
command, or in storage. Cursors mark file position and access information in Distributed Data
Management architecture.

DASD volume
A DASD space identified by a common label and accessed by a set of related addresses.

data class
A collection of allocation and space attributes, defined by the storage administrator, that are used to
create a data set.

data management services
The storage, organization, and access of data.

data set
In DFSMS, the major unit of data storage and retrieval, consisting of a collection of data in one of
several prescribed arrangements and described by control information to which the system has
access. In z/OS non-UNIX environments, the terms data set and file are generally equivalent and
sometimes are used interchangeably. See also file. In z/OS UNIX environments, the terms data set
and file have quite distinct meanings.

data stream
All data transmitted through a data channel in a single read or write operation.

DCAS
DFM central address space

DDM
See Distributed Data Management Architecture.

DDM file name
Distributed Data Management file name.

device name
This term is used interchangeably with device number, unit number, and unit name. It is the number
by which a specific device is known. For example, and installation with two tape drives might assign
them device names 181 and 182.

DFM
Distributed FileManager

Glossary 117

DFSMS
See Data Facility Storage Management Subsystem.

DFSMSdfp
A DFSMS functional component or base element of z/OS, that provides functions for storage
management, data management, program management, device management, and distributed data
access.

DFSMSdss
A DFSMS functional component or base element of z/OS, used to copy, move, dump, and restore data
sets and volumes.

DFSMShsm
A DFSMS functional component or base element of z/OS, used for backing up and recovering data,
and managing space on volumes in the storage hierarchy.

DFSMSrmm
A DFSMS functional component or base element of z/OS, that manages removable media.

direct file
A file that contains records that have a relationship between the contents of the record and the record
position at which the record is stored.

directory
A file that maps the names of other directories and files to their locations.

distributed computing
Computing that involves the cooperation of two or more machines communicating over a network.
Data and resources are shared among the individual computers.

distributed data
Data that is stored in more than one system in a network and is available to remote users and
application programs.

distributed data management
A methodology that allows data on one system to be shared and accessed by another system.

Distributed Data Management Architecture (DDM)
Distributed Data Management Architecture (DDM) offers a vocabulary and a set of rules for sharing
and accessing data among like and unlike computer systems. DDM includes a set of standardized file
models for keyed, relative record, sequential, and stream data. It allows users and applications to
access data without concern for the location or format of the data.

distributed file
A file that can be accessed by remote applications or remote users. Also, the capability of accessing
such a file.

Distributed FileManager
Distributed FileManager (or DFM) is an implementation of target (server) support as defined by
Distributed Data Management Architecture (DDM). DDM permits systems in an extended enterprise
that have DDM source (client) capability to access file data on a DDM target z/OS system. See
definitions for source, target, and extended enterprise.

distributed processing
A capability that enables applications and data located at remote sites or processors connected by a
communications link to be used as if they were local.

DSAS
Data space address space

DSS
Data set services

EBCDIC
Extended binary coded decimal interchange code

118 z/OS: DFSMS Distributed FileManager Guide and Reference

extended enterprise
A heterogeneous computing environment that often includes both centralized hosts and distributed
workstations connected in a network. Gateways within the extended enterprise provide connections
to local area networks (LANs). These LANs can serve any computing systems architecture.

ESDS
Entry-sequenced data set

extent
A file extent is a storage area for records allocated to a file by the server. Extents are not formally
architected in DDM.

file
A collection of information treated as a unit. In z/OS non-UNIX environments, the terms data set and
file are generally equivalent and are sometimes used interchangeably. See also data set.

file class
Refers to the DDM file class (FILCLS) used when writing VSAM for a DDM client or VSAM for AIX
applications.

file model
A description of how information is organized and managed within a file.

fixed-length record
A fixed-length record is one whose length is established as an attribute of the file in which it is stored,
and can not be changed. Every record in such a file has the same length, which is specified by the
record length attribute (RECLEN) of the file.

gateway
A functional unit that interconnects two computer networks with different network architectures. A
gateway connects networks or systems of different architectures. A bridge interconnects networks or
systems with the same or similar architectures.

GDG
Generation data group

GDS
Generation data set

heterogeneous computer network
A computer network in which computers have dissimilar architecture, but nevertheless are able to
communicate.

HFS
Hierarchical file system

ICF
See Integrated catalog facility (ICF).

IDCAMS
Integrated catalog access method services

integrated catalog facility (ICF)
In the Data Facility Product (DFP), a facility that provides for integrated catalog facility catalogs.

Interactive Storage Management Facility (ISMF)
The interactive interface of DFSMS that allows users and storage administrators access to the storage
management functions.

IPL
Initial program load

ISMF
See Interactive Storage Management Facility (ISMF).

JCL
job control language

Glossary 119

keyed field
The portion of a record which is used (possibly with other key fields) to locate a data record in a keyed
file.

KSDS
Key-sequenced data set

LAN
See local area network.

LDMI
Local data management interface.

LDS
Linear data set (VSAM)

LE
Language environment

local
Local is your reference point when discussing such entities as platforms or applications. For example,
when discussing network conversations from the reference point of an z/OS platform, local refers to
entities located on the z/OS system. Similarly, when discussing data access methods from the
reference point of an z/OS platform, local refers to the z/OS access methods. Contrast with remote.

local area network (LAN)
A computer network located on a user's premises within a limited geographical area. Communication
within a local area network is not subject to external regulations; however, communication across the
LAN boundary can be subject to some form of regulation.

local location name
The name by which a system is know to other systems in an SNA network. A local location name is
equivalent to an SNA local logical unit name.

locking
The process of restricting resources to provide protection from concurrent users of the system.

logical unit (LU)
In SNA, a logical port through which an end user accesses the SNA network in order to communicate
with another end user and through which the end user accesses the functions provided by system
services.

logical unit 6.2 (LU 6.2)
A particular type of Systems Network Architecture (SNA) logical unit (LU) that provides a connection
between resources and transactions programs running on different network nodes.

LU
See logical unit.

LU 6.2
See logical unit 6.2.

mainframe
A large computer, particularly one to which other computers can be connected so that they can share
facilities the mainframe provides.

management class
A named collection of management attributes describing the retention, backup, and class transition
characteristics for a group of objects in an object storage hierarchy.

migration
The process of moving unused data to lower cost storage in order to make space for high-availability
data. If you wish to use the data set, it must be recalled. See also migration level 1 and migration level
2.

migration level 1
DFSMShsm-owned DASD volumes that contain data sets migrated from primary storage volumes. The
data can be compressed. See also storage hierarchy. Contrast with primary storage and migration level
2.

120 z/OS: DFSMS Distributed FileManager Guide and Reference

migration level 2
DFSMShsm-owned tape or DASD volumes that contain data sets migrated from primary storage
volumes or from migration level 1 volumes. The data can be compressed. See also storage hierarchy.
Contrast with primary storage and migration level 1.

mode name
The name used by the initiator of a session to designate the characteristics desired for the session,
such as traffic pacing values, message-length limits, sync point and cryptography options, and the
class of service within the transport network.

object storage hierarchy
A hierarchy consisting of objects stored in DB2® table spaces on DASD, on optical or tape volumes that
reside in a library, and on optical or tape volumes that reside on a shelf. See also storage hierarchy.

optical volume
Storage space on an optical disk, identified by a volume label. See also volume.

partitioned data set (PDS)
A data set on direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data.

partitioned data set extended (PDSE)
A system-managed data set that contains an indexed directory and members that are similar to the
directory and members of partitioned data sets. A PDSE can be used instead of a partitioned data set.

partner
In data communications, the remote application program or the remote computer. Also refers to
complementary information or function on a remote platform. To conduct a network conversation, for
example, Distributed FileManager requires a local logical unit (LU) on the target system and a partner
LU on the source system.

PDS
See Partitioned data set.

PDSE
See Partitioned data set extended.

platform
A computer system running a specific operating system connected in a network. For example, z/OS
and i5/OS are different operating system platforms.

PPT
Program property table

primary space allocation
Amount of space requested by a user for a data set when it is created. Contrast with secondary space
allocation.

primary storage
A DASD volume available to users for data allocation. The volumes in primary storage are called
primary volumes. See also storage hierarchy. Contrast with migration level 1 and migration level 2.

protocol
(1) A set of semantic and syntactic rules that determines the behavior of functional units in achieving
communication. (2) A specification for the format and relative timing of information exchanged
between communicating parties.

QSAM
Queued sequential access method

RACF
See Resource Access Control Facility (RACF).

record
The basic unit of data stored in a record-oriented file.

record data
Data sets with a record-oriented structure, which are accessed record by record. This data set
structure is typical of data sets on VM, z/OS, and i5/OS systems.

Glossary 121

record-level access
A means of supporting distributed files. Enables an application or user to read and update individual
records of files on a remote system without specifying the data's location.

record-oriented file
File with a record-oriented structure that is accessed record by record. This file structure is typical of
data sets on VM, z/OS, and i5/OS systems. Contrast with stream-oriented file.

remote
Remote is relative to your reference point when discussing such entities as platforms or applications.
For example, when discussing network conversations from the reference point of an z/OS platform,
remote refers to entities that access z/OS data across an network. A DDM client application accessing
the z/OS data would be remote. Contrast with local.

Resource Access Control Facility (RACF)
An IBM licensed program that is included in z/OS Security Server and is also available as a separate
program for the z/OS and VM environments. RACF provides access control by identifying and verifying
the users to the system, authorizing access to protected resources, logging detected unauthorized
attempts to enter the system, and logging detected accesses to protected resources.

RLS
Record-level sharing

RRDS
Relative record data set

SAM
Sequential access method

SDDM/400
DDM source on i5/OS

SdU
See SMARTdata UTILITIES.

secondary space allocation
Amount of additional space requested by the user for a data set when primary space is full. Contrast
with primary space allocation.

sequential file
A type of z/OS file that has its records stored and retrieved according to their physical order within the
file. It must be on a direct access volume.

server
(1) A functional unit that provides shared services to workstations over a network; for example, a file
server, a print server, a mail server. (2) On a network, the computer that contains the data or provides
the facilities to be accessed by other computers in the network. (3) A program that handles protocol,
queuing, routing, and other tasks necessary for data transfer between devices in a computer system.

session
A logical connection between two stations or network addressable units (NAUs) that allows them to
communicate.

SMARTdata Utilities (SdU)
SMARTdata Utilities (SdU) is a component of a DDM client system that provides source DDM services.

SMS
See Storage Management Subsystem (SMS).

SNA
See Systems Network Architecture.

source
Source is the term used in Distributed Data Management Architecture (DDM) to refer to the platform
that originates a request for remote data. Source is also known as client. Contrast with target.

source server
DDM term for the function that converts source requests to data streams containing DDM commands
and output data and sends them over the network to the target server.

122 z/OS: DFSMS Distributed FileManager Guide and Reference

source system
A system containing an application program that requests access to data in another system.

SPE
Small programming enhancement

storage administration group
A centralized group within the data processing center that is responsible for managing the storage
resources within an installation.

storage administrator
A person in the data processing center who is responsible for defining, implementing, and maintaining
storage management policies.

storage class
A collection of storage attributes that identify performance goals and availability requirements,
defined by the storage administrator, used to select a device that can meet those goals and
requirements.

storage hierarchy
An arrangement of storage devices with different speeds and capacities. The levels of the storage
hierarchy include main storage (memory, DASD cache), primary storage (DASD containing
uncompressed data), migration level 1 (DASD containing data in a space-saving format), and
migration level 2 (tape cartridges containing data in a space-saving format). See also primary storage,
migration level 1, migration level 2, and object storage hierarchy.

storage management
The activities of data set allocation, placement, monitoring, migration, backup, recall, recovery, and
deletion. These can be done either manually or by using automated processes. The Storage
Management Subsystem automates these processes for you, while optimizing storage resources. See
also Storage Management Subsystem.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and centralize the management of storage. Using SMS, a storage
administrator describes data allocation characteristics, performance and availability goals, backup
and retention requirements, and storage requirements to the system through data class, storage
class, management class, storage group, and ACS routine definitions.

Stream data file
Data sets with a byte-oriented structure, which are accessed as continuous streams of data bytes.
This data set (file) structure is common in workstation environments.

stream-oriented file
File with a byte-oriented structure that is accessed as continuous streams of data bytes. This file
structure is common in workstation environments. Contrast with record-oriented file.

system administrator
The person at a computer installation who designs, controls, and manages the use of the computer
system.

system operator
An operator responsible for performing system-oriented procedures.

system programmer
A programmer who plans, generates, maintains, extends, and controls the use of an operating system
and applications with the aim of improving overall productivity of an installation.

system-managed storage
Storage managed by the Storage Management Subsystem. SMS attempts to deliver required services
for availability, performance, and space to applications. See also system-managed storage
environment.

system-managed storage environment
An environment that helps automate and centralize the management of storage. This is achieved
through a combination of hardware, software, and policies. In the system-managed storage
environment for z/OS, the function is provided by DFSORT, RACF, and the combination of DFSMS and
z/OS.

Glossary 123

Systems Network Architecture (SNA)
The description of the logical structure, formats, protocols, and operational sequences for
transmitting information units through the networks and also operational sequences for controlling
the configuration and operation of networks.

tape volume
A tape volume is the recording space on a single tape cartridge or reel. See also volume.

target
Target is the term used in Distributed Data Management Architecture (DDM) to refer to the platform
that fulfills a request for remote data. Target is also known as server. Contrast with source.

target server
DDM term that describes the function that converts DDM data streams received from a source server
to local data management requests and sends reply messages and input data back to the source
server over a network.

target system
A system containing data that has been requested by another system.

TCP/IP
See Transmission Control Protocol/Internet Protocol (TCP/IP).

TP
See Transaction program (TP).

transaction program (TP)
A program that uses the Advanced Program-to-Program Communications (APPC) application
programming interface (API) to communicate with a partner application program on a remote system.

Transmission Control Protocol/Internet Protocol (TCP/IP)
The two fundamental protocols of the Internet protocol suite. The abbreviation TCP/IP is frequently
used to refer to this protocol suite. TCP/IP provides for the reliable transfer of data, while IP transmits
the data through the network in the form of datagrams. Users can send mail, transfer files across the
network, or execute commands on other systems.

TSO
Time Sharing Option

user interface
(1) The means by which a user communicates with a system, program, or device. (2) The hardware,
software, or both that implements a user interface, allowing the user to interact with and perform
operations on a system, program, or device. Examples are a keyboard, mouse, command language, or
windowing subsystem.

variable-length record
A variable-length record is one whose length can be changed after it has been written to a file. The
length of individual records in the file varies from record to record but cannot exceed the maximum
length specified by the RECLEN attribute of the file. The length of a record is initially set by the
DDMInsertRecEOF, DDMInsertRecNum or DDMInsertRecKey function, but can be changed by a
subsequent function (DDMModifyRec, DDMInsertRecNum, DDMInsertRecKey, or DDMDeleteRec).

volume
The storage space on DASD, tape, or optical devices, which is identified by a volume label. See also
DASD volume, optical volume, and tape volume.

VRRDS
Variable-length relative record data set

VSAM
Virtual Storage Access Method

VSE
Virtual Storage Extended

VTAM
Virtual Telecommunications Access Method

124 z/OS: DFSMS Distributed FileManager Guide and Reference

wild card
A character or sequence of characters that can be included in a character string to represent zero or
more characters in the string.

workstation
(1) A device that enables users to transmit information to or receive information from a computer; for
example, a display station or printer. (2) A functional unit at which a user works. It can be a
programmable workstation, such as an IBM xSeries computer, or a nonprogrammable workstation,
such as a terminal. (3) A terminal or microcomputer, usually one that is connected to a mainframe or
to a network, at which a user can perform applications.

WTO
Write-to-Operator

Glossary 125

126 z/OS: DFSMS Distributed FileManager Guide and Reference

Index

A
ACBNAME parameter

APPL definition 35
LUADD definition 32

accessibility
contact IBM 107
features 107

accessing
data in extended enterprise 2
z/OS data sets requirements 11

ACS (automatic class selection)
routines for Distributed FileManager

data class 42
management class 42
storage class 42

activating Distributed FileManager, example 41
adding to VSAM KSDS

side information 34
TP profile 33

administration utility
adding TP profile 33

administrator, TP
defining to RACF 44

Advanced Program-to-Program Communication (APPC) 32
AGENT parameter 26
alias names

directory access 17
record access 15
stream access 16

allocating VSAM KSDS
for side information 34
for TP profile 33

altering CCSID parameter 21
alternate index files

base data sets 18
DDM file model 12
defining 18

APPC (Advanced Program-to-Program Communication)
Distributed FileManager

creating side information 34
creating TP profile 33
defining APPC/MVS start parameters 32
defining APPC/MVS transaction scheduler 34
LUADD definition 32
TP profile 32

starting
APPC/MVS 45
APPC/MVS transaction scheduler 45

stopping APPC/MVS 48
support for Distributed FileManager 6
using administration utility 33

APPL definition 35
ASCH

defining start parameters 34
displaying status 46
stopping 48

assistive technologies 107
ATBSDFMU 33
attributes, file, DDM 97
automatic class selection (ACS) 42

B
BASE parameter, LUADD definition 32

C
CANCEL command

controlling conversations 47
CCSID (coded character set identifier)

altering 22
determining

using IDCAMS 24
using ISMF 23

introduction 21
CDRA (character data representation architecture)

introduction 21
Character Data Representation Architecture (CDRA) 21
CLASSADD definition

defining start parameters, transaction scheduler 34
client/server relationship 4
coded character set identifier 22
contact

z/OS 107
converting data 22
creating DDM file attributes 23
customizing

for Distributed FileManager
APPC/MVS start parameters 32
APPC/MVS transaction scheduler 34
illustration of tasks 29
startup parameters 38
startup procedure 41
summary of tasks 29
VTAM 35

D
data set

altering REUSE parameter 19, 20
data conversion 22
Distributed FileManager tuning parameters 40
name mapping 18
naming, using Distributed FileManager 18
using Distributed FileManager

access limitations 15, 16
access requirements 11

z/OS
supported by Distributed FileManager 11

DataAgent
accessing data 26
DFMQTSO sample 77

 127

DataAgent (continued)
DFMX0001 sample 57
DFMXAGNT sample 59
DFMXSORT sample 65
DFMXSRTI sample 73
DFMXTSOI sample 85
how it works 9

dbtoken
defining for Distributed FileManager 43

DDM (Distributed Data Management Architecture)
file attributes

altering CCSID parameter 21
creating 23
definition 23
determining 23, 24
loss of 15, 16
propagating 25

implementation 6
implementations

platforms supporting 7
relationship to Distributed FileManager 6
source, communicating with Distributed FileManager 8

DDM client system
defining

local LU, example 38
DDM file attributes 97
DDM file models 12
defining

ACS routines for Distributed FileManager
data class example 42
management class example 42
storage class example 42

APPC/MVS start parameters
LUADD definition 32

Distributed FileManager
side information 34
TP profile 33

logon mode to VTAM 36
partner information, requirements 37
startup procedure

for Distributed FileManager 41
to RACF

TP administrator 44
user ID 44

determining DDM file attributes
using DCOLLECT 24
using ISMF 23
using LISTCAT 24

DFM00 system sample 51
DFMQTSO sample 77
DFMX0001 sample 57
DFMXAGNT sample 59
DFMXSORT sample 65
DFMXSRTI sample 73
DFMXTSOI sample 85
directories

access 16
restrictions 17

DISPLAY APPC command
example

LU status 46
TP status 46

DISPLAY ASCH command 46
displaying status

displaying status (continued)
local LU 46
transaction program (TP) 46
transaction scheduler 46

Distributed Data Management Architecture (DDM) 6
distributed data processing

client/server relationship 4
discussion 4

Distributed FileManager
access requirements 11
accessing data using the DataAgent 26
APPC/MVS support, overview 6
applications of 10
benefits 4
communicating with DDM source 8
controlling conversations

stopping local LU 47
stopping TP 47

creating
side information 34
TP profile 33

customizing
APPC/MVS 31
illustration of tasks 29
summary of tasks 29
VTAM 35

data conversion 22
data set

access limitations 15, 16
name mapping 18
naming 18

DDM file attributes
altering CCSID parameter 21
definition 23
propagating PDSE 25
propagating PS and VSAM 25
using IDCAMS to determine 24
using ISMF to determine 23

DDM source, relationship with 6
DDM support, overview 6
defining

APPC/MVS transaction scheduler 34
partner information 37
startup parameters for Distributed FileManager for
z/OS 38
startup procedure 41

how DataAgent works 9
monitoring conversations 46
operating procedures 45
processing environment

components 6
description 7

RACF support, overview 7
starting 45
stopping 48
TP access security

requirements 43
using RACF 43

verifying PPT entries 41
VTAM support, overview 7
wild card options 18
z/OS data sets

not supported 12
supported 11

128

E
EXPORT command

propagating DDM attributes 25
extended enterprise, data access in 2

F
feedback xv
file attributes, DDM 97
FORCE command, stopping TP 48

G
gateway, in extended enterprise 2
GDEAPDEF system sample 49
GDEAPPC system sample 49
GDEASCH system sample 50
GDELOGMD system sample 51
GDEPRTLU system sample 54
GDETPDEF system sample 53

H
hidden files 17

I
IDCAMS

altering REUSE parameter 19
determining DDM attributes

using DCOLLECT command 24
using LISTCAT command 24

propagating DDM attributes
using IMPORT command 25

IEBCOPY utility
propagating DDM attributes

for PDSE member 25
implementing

TP security to RACF 44
IMPORT command

propagating DDM attributes 25
Interactive Storage Management Facility (ISMF) 23
ISMF (Interactive Storage Management Facility)

determining DDM file attributes 23

K
keyboard

navigation 107
PF keys 107
shortcut keys 107

L
LISTCAT command

determining DDM attributes 24
local LU 35
logical unit (LU)

local
APPL definition 35
DDM client, example 38

logical unit (LU) (continued)
local (continued)

defining to APPC/MVS 32
defining to VTAM 35
displaying status 46
stopping 47

partner
defining to VTAM 37

logon mode
defining to VTAMLIB 36
defining to VTAMLST 35

logon mode requirements 105
LU 35
LU 6.2 protocol

description 6
LUADD definition

example 32

M
mapping data set name on a DDM client 18
migrated files 17
multivolume data sets 15

N
naming data set

using Distributed FileManager 18
navigation

keyboard 107

P
parameters, DataAgent file name suffix 26
PARM parameter 26
PARMLIB

APPCPMxx member
defining APPC/MVS start parameters 32
LUADD definition 32

ASCHPMxx member
defining transaction scheduler 34

DFM00 member
Distributed FileManager startup parameters 38

SCHEDxx member 41
partner LU 35
PDSE member

propagating DDM attributes
restrictions 25

PDSEs
advantages 21
using 21

PDSs
limitations 21
using 21

performance
Distributed FileManager

tuning parameters 39
PGM parameter 27
platform, operating system

DDM implementations on 7
PPT (program property table)

verifying Distributed FileManager entries 41
PPT Entries for DFM for z/OS 93

 129

preserving DDM attributes 25
PROCLIB

DFM member
Distributed FileManager startup procedure 41

program property table (PPT) 41
propagating DDM attributes

for PDSE 25
for PS and VSAM data sets 25

Q
QPCSUPP logon mode 105

R
RACF (Resource Access Control Facility)

defining TP access security
description 7
examples 43
for Distributed FileManager 43

record-oriented data
access restrictions using Distributed FileManager 15
DDM access functions 14
DDM access methods 13
DDM file classes 13

reusing VSAM data set 19

S
SCHED parameter, LUADD definition 33
sending to IBM

reader comments xv
SET command

controlling TP status 47
shortcut keys 107
SIDEINFO DATASET parameter

in LUADD definition 32
SNA (Systems Network Architecture)

LU 6.2 protocol 6
source

relationship with target 4
START parameter 27
starting

APPC/MVS 45
starting up

APPC/MVS transaction scheduler 45
Distributed FileManager 45

stream-oriented data
access restrictions

using Distributed FileManager 16
DDM access functions 15
DDM access method 16
DDM file class 15

Summary of changes xvi
system files 17
system PROCLIB member DFM, sample 91
system samples

DFM00 51
DFMQTSO 77
DFMX0001 57
DFMXAGNT 59
DFMXSORT 65
DFMXSRTI 73

system samples (continued)
DFMXTSOI 85
GDEAPDEF 49
GDEAPPC 49
GDEASCH 50
GDELOGMD 51
GDEPRTLU 54
GDETPDEF 53

Systems Network Architecture (SNA) 6

T
target

relationship with source 4
terminology, special 1
TP (transaction program) 32
TPDATA parameter

in LUADD definition 32
TPMODIFY command

changing TP status 47
transaction program (TP)

access security
defining to RACF 44
requirements for 43

defining for Distributed FileManager 33
description 32
displaying status 46
profile

defining to RACF 44
stopping 47, 48

transaction scheduler, APPC/MVS
defining start parameters 34
starting 45

tuning parameters
for Distributed FileManager

related to data set definition 40
related to performance 39

U
user ID, defining to RACF 44
user interface

ISPF 107
TSO/E 107

V
verifying PPT entries

for Distributed FileManager 41
Virtual Telecommunications Access Method (VTAM) 35
VSAM data set

altering REUSE parameter 19
propagating DDM attributes 25

VTAM (Virtual Telecommunications Access Method)
APPL definition 35
defining

local LU to VTAMLST 35
logon mode to VTAMLIB 36
partner information 37

support, overview 7
VTAMLIB

defining logon mode 36
VTAMLST

130

VTAMLST (continued)
defining local LU 35

W
wild cards

restrictions 18
workstation

DFSMSdfp support 4

 131

132

IBM®

SC23-6848-30

	Contents
	List of Figures
	List of Tables
	About this document
	Required product knowledge
	Referenced documents
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Introduction to Distributed FileManager
	Terminology Used in This Book
	Introduction to Distributed Data Processing
	Extended Enterprise Data Access
	Transparent Data Access
	Sharing and Accessing Data
	Avoiding Duplicate Data
	Portable Applications
	Transparent Applications

	Client/Server Perspective

	DFSMSdfp Distributed Data Processing Environment
	Distributed FileManager
	Introduction to the Distributed FileManager Environment
	Components of the Distributed FileManager Environment
	DDM
	DDM Source Systems
	APPC Communications Protocol
	RACF Conversation Access Security

	Platforms That Support DDM Architecture Implementations
	How Distributed FileManager Works
	Profile of the Distributed FileManager Environment
	How DDM Source Systems Communicate with Distributed FileManager

	How Distributed FileManager DataAgent Works

	Scenarios for Distributed FileManager

	Chapter 2. Accessing Data Sets with Distributed FileManager
	Accessing z/OS Data Sets
	Data Set Requirements
	Data Set Types Supported
	Data Set Types Not Supported
	File Models Supported
	Default File Attributes
	Default Delete Capability Attribute
	Changing the Delete Capability Attribute

	Distributed FileManager Access Functions
	Record Files and Record Access
	Record File Classes
	Access to Record Files
	Record Access Functions
	Access Restrictions

	Stream Files and Stream Access
	Stream Files
	Stream Access
	Access Restrictions

	Directories and Directory Access
	Selected Lists of Target Data Sets
	PDSE Directories and PDS Directories
	Access Restrictions

	Data Set Naming
	Wild Cards
	Wild Card Restrictions

	Using VSAM Data Sets
	REUSE Attribute for VSAM Data Sets
	Nonreusable Attribute
	Reusable Attribute

	Using PDSE and PDS Data Sets
	Special PDSE and PDS Processing Considerations
	Wildcard Processing Exceptions
	Using PDSEs
	Using PDSs

	Coded Character Set Identifiers
	Setting the CCSID Attribute
	Setting the CCSID from a Remote System
	Setting the CCSID from a Local System

	Data Conversion

	Associated DDM Attributes
	Listing DDM Attributes
	Using the ISMF Data Set List
	Using the IDCAMS DCOLLECT Command
	Using the IDCAMS LISTCAT Command

	Propagating DDM Attributes
	SAM and VSAM Data Sets
	PDSE Members

	Accessing Data Using the DataAgent Parameters
	Using the DFM DataAgent Filename Suffix Parameters
	Using the AGENT(agent_name<,procedure_parameter>)
	Using the PARM(agent_parameter_list)
	Using the PGM(program_name)
	Using the START(job_name<,job_parameters>)

	Chapter 3. Customizing z/OS for Distributed FileManager
	What Is In This Chapter?
	Summary of Customizing Tasks
	Interrelationships of Customizing Tasks

	APPC/MVS Customizing Tasks
	Defining PARMLIB Start Parameters for APPC/MVS
	Using the APPC/MVS LUADD Definition

	Creating the Distributed FileManager TP Profile
	Allocating a VSAM KSDS for the TP Profile
	Adding the TP Profile to the VSAM KSDS

	Creating the APPC/MVS Side Information Data Set
	Defining PARMLIB Start Parameters for the APPC/MVS Scheduler

	VTAM Customizing Tasks
	Defining the Local LU to VTAMLST
	Defining APPC/MVS Logon Mode Entry in VTAMLIB
	Defining LU and Logon Mode on Partner Systems
	Defining Partner Information on a DDM client

	Distributed FileManager Customizing Tasks
	Tuning Distributed FileManager Startup Parameters in System PARMLIB
	Parameters Related to Performance
	Parameters Related to Data Set Definition
	Parameters Related to DataAgent

	Activating Distributed FileManager in System PROCLIB
	Verifying PPT Entries for Distributed FileManager

	ACS Routines for Defining Distributed FileManager SMS Classes
	Establishing Distributed FileManager TP Access Security
	Using RACF to Control Access to the Distributed FileManager TP
	Defining the Distributed FileManager TP Profile to RACF
	Defining a TP Administrator to RACF
	Defining a User ID to RACF
	Implementing RACF Access Protection for TP

	Chapter 4. Operating Distributed FileManager
	Starting the Distributed FileManager Environment
	Starting APPC/MVS
	Starting the APPC/MVS Transaction Scheduler
	Starting Up Distributed FileManager
	Triggering the Distributed FileManager DataAgent

	Monitoring Status of Distributed FileManager Conversations
	Using the DISPLAY APPC Command
	Displaying TP Status Information
	Displaying LU Status Information

	Using the DISPLAY ASCH Command

	Controlling Status of Distributed FileManager Conversations
	Deactivating the Distributed FileManager TP
	Stopping a Local LU with the MVS SET Command
	Stopping DFM for z/OS with the MVS CANCEL Command
	Stopping the Distributed FileManager TP
	Stopping APPC/MVS, ASCH, and DFM
	Using the FORCE Command

	Appendix A. System Samples
	System SAMPLIB Samples
	GDEAPPC
	GDEAPDEF
	GDEASCH
	DFM00
	GDELOGMD
	GDETPDEF
	GDEPRTLU

	Appendix B. DFMX0001
	Appendix C. DFMXAGNT
	Appendix D. DFMXSORT
	Appendix E. DFMXSRTI
	Appendix F. DFMQTSO
	Appendix G. DFMXTSOI
	Appendix H. System PROCLIB Member DFM
	Appendix I. PPT Entries for Distributed FileManager
	Appendix J. DFMACALL.C sample
	Appendix K. DDM File Attributes
	Appendix L. Application Programming Considerations
	Distributed FileManager Implementation
	DDM Record Access File Creation
	FileClass SEQFIL
	FileClass KEYFIL
	FileClass DIRFIL
	Additional Considerations

	Stream File Creation
	File Access Commands Supported by Distributed FileManager
	Sequential Files
	Direct Files
	Keyed Files
	Stream Files

	DDM Record Access Restrictions
	Stream File API Restrictions
	Logon Mode Requirements

	Appendix M. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

